亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A feature extraction approach for state-of-health estimation of lithium-ion battery

健康状况 电池(电) 特征(语言学) 计算机科学 模式识别(心理学) 特征提取 电压 人工智能 工程类 功率(物理) 电气工程 语言学 量子力学 物理 哲学
作者
Changhao Piao,Sun Rongli,Junsheng Chen,Mingjie Liu,Zhen Wang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:73: 108871-108871 被引量:24
标识
DOI:10.1016/j.est.2023.108871
摘要

Accurate state-of-health (SOH) estimation is essential to ensure the reliable and safe usage of lithium-ion batteries (LIBs). A novel health feature extraction approach is proposed in this manuscript for battery SOH estimation. Firstly, the degradation data are collected from LIBs with two different life stages, and then the discrete incremental capacity (IC) curve is obtained under different constant voltage intervals dv. The corresponding charging voltage range with obvious variation trend of IC is selected and divided into several subintervals with Δv. The average IC of each subinterval is obtained. Furthermore, the consistency between the average IC of each voltage subinterval and battery capacity is analyzed and evaluated based on raw discrete IC curve. The average IC with the most consistent in relation to battery capacity degeneration is selected as the health feature. The impact of varying dv and Δv values on the feature is conducted based on Spearman correlation analysis, and the health feature with maximum Spearman correlation coefficient is used to build battery SOH estimation model. Finally, two SOH estimation models and comparative analysis of the performance between proposed health feature and other accepted features are utilized to verify the proposed health feature extraction approach. The results demonstrate that our extracted health feature effectively reveals the battery performance degeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
沐阳完成签到 ,获得积分10
6秒前
王佳俊完成签到,获得积分10
9秒前
13秒前
14秒前
壹玖一陆完成签到,获得积分20
16秒前
16秒前
18秒前
豆都发布了新的文献求助10
18秒前
耳东陈完成签到 ,获得积分10
19秒前
壹玖一陆发布了新的文献求助10
20秒前
科研通AI6应助壹玖一陆采纳,获得10
25秒前
27秒前
我是老大应助wuzihao采纳,获得10
27秒前
max完成签到,获得积分10
27秒前
29秒前
34秒前
CodeCraft应助传统的书包采纳,获得30
37秒前
Evaporate发布了新的文献求助10
37秒前
37秒前
42秒前
小王完成签到 ,获得积分10
43秒前
浮游应助科研通管家采纳,获得10
46秒前
酷波er应助科研通管家采纳,获得10
47秒前
ding应助科研通管家采纳,获得10
47秒前
浮浮世世应助科研通管家采纳,获得30
47秒前
浮游应助科研通管家采纳,获得10
47秒前
情怀应助科研通管家采纳,获得10
47秒前
tdtk发布了新的文献求助10
47秒前
张步完成签到 ,获得积分10
48秒前
49秒前
52秒前
老老实实好好活着完成签到,获得积分10
52秒前
56秒前
zozox完成签到 ,获得积分10
59秒前
李健的小迷弟应助nanne采纳,获得30
59秒前
1分钟前
gzwhh发布了新的文献求助30
1分钟前
酷波er应助tdtk采纳,获得10
1分钟前
1分钟前
JamesPei应助zorro3574采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490