A feature extraction approach for state-of-health estimation of lithium-ion battery

健康状况 电池(电) 特征(语言学) 计算机科学 模式识别(心理学) 特征提取 电压 人工智能 可靠性工程 工程类 功率(物理) 电气工程 语言学 物理 哲学 量子力学
作者
Changhao Piao,Renhua Sun,Junsheng Chen,Mingjie Liu,Zhen Wang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:73: 108871-108871 被引量:2
标识
DOI:10.1016/j.est.2023.108871
摘要

Accurate state-of-health (SOH) estimation is essential to ensure the reliable and safe usage of lithium-ion batteries (LIBs). A novel health feature extraction approach is proposed in this manuscript for battery SOH estimation. Firstly, the degradation data are collected from LIBs with two different life stages, and then the discrete incremental capacity (IC) curve is obtained under different constant voltage intervals dv. The corresponding charging voltage range with obvious variation trend of IC is selected and divided into several subintervals with Δv. The average IC of each subinterval is obtained. Furthermore, the consistency between the average IC of each voltage subinterval and battery capacity is analyzed and evaluated based on raw discrete IC curve. The average IC with the most consistent in relation to battery capacity degeneration is selected as the health feature. The impact of varying dv and Δv values on the feature is conducted based on Spearman correlation analysis, and the health feature with maximum Spearman correlation coefficient is used to build battery SOH estimation model. Finally, two SOH estimation models and comparative analysis of the performance between proposed health feature and other accepted features are utilized to verify the proposed health feature extraction approach. The results demonstrate that our extracted health feature effectively reveals the battery performance degeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远方的蓝风铃完成签到,获得积分10
1秒前
thelan完成签到 ,获得积分10
1秒前
1秒前
zxh发布了新的文献求助10
1秒前
3秒前
知足且上进完成签到,获得积分10
4秒前
4秒前
齐成危完成签到,获得积分10
5秒前
Owen应助聂学雨采纳,获得10
6秒前
1111111完成签到,获得积分10
6秒前
踏雪无痕发布了新的文献求助10
6秒前
xiaoluoluo完成签到,获得积分10
7秒前
学术菜鸡123完成签到,获得积分10
8秒前
慈祥的依云完成签到,获得积分10
9秒前
小花小宝和阿飞完成签到 ,获得积分10
10秒前
xinC完成签到 ,获得积分10
11秒前
乐乐乐乐乐乐应助中恐采纳,获得10
11秒前
11秒前
Tao完成签到,获得积分10
11秒前
fossil完成签到,获得积分10
11秒前
可爱的石头完成签到,获得积分10
12秒前
丘比特应助研友_8YKmvn采纳,获得10
12秒前
猜猜我是谁完成签到,获得积分10
12秒前
Shirley完成签到,获得积分10
12秒前
受伤书文完成签到,获得积分10
13秒前
ider完成签到 ,获得积分10
13秒前
ss完成签到,获得积分10
13秒前
13秒前
温酒筚篥完成签到,获得积分10
13秒前
13秒前
颖颖子完成签到,获得积分10
13秒前
13秒前
优雅山柏完成签到,获得积分10
14秒前
Youth完成签到 ,获得积分10
14秒前
15秒前
15秒前
Cyx完成签到,获得积分10
15秒前
tutulunzi完成签到,获得积分0
16秒前
16秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134120
求助须知:如何正确求助?哪些是违规求助? 2784938
关于积分的说明 7769524
捐赠科研通 2440503
什么是DOI,文献DOI怎么找? 1297428
科研通“疑难数据库(出版商)”最低求助积分说明 624961
版权声明 600792