Dynamic civil facility degradation prediction for rare defects under imperfect maintenance

可靠性工程 可靠性(半导体) 工程类 隐马尔可夫模型 参数统计 不完美的 计算机科学 预防性维护 统计 人工智能 数学 语言学 量子力学 物理 哲学 功率(物理)
作者
Sou-Sen Leu,Yequn Fu,Pei‐Lin Wu
出处
期刊:Journal of Quality in Maintenance Engineering [Emerald Publishing Limited]
卷期号:30 (1): 81-100
标识
DOI:10.1108/jqme-01-2023-0001
摘要

Purpose This paper aims to develop a dynamic civil facility degradation prediction model to forecast the reliability performance tendency and remaining useful life under imperfect maintenance based on the inspection records and the maintenance actions. Design/methodology/approach A real-time hidden Markov chain (HMM) model is proposed in this paper to predict the reliability performance tendency and remaining useful life under imperfect maintenance based on rare failure events. The model assumes a Poisson arrival pattern for facility failure events occurrence. HMM is further adopted to establish the transmission probabilities among stages. Finally, the simulation inference is conducted using Particle filter (PF) to estimate the most probable model parameters. Water seals at the spillway hydraulic gate in a Taiwan's reservoir are used to examine the appropriateness of the approach. Findings The results of defect probabilities tendency from the real-time HMM model are highly consistent with the real defect trend pattern of civil facilities. The proposed facility degradation prediction model can provide the maintenance division with early warning of potential failure to establish a proper proactive maintenance plan, even under the condition of rare defects. Originality/value This model is a new method of civil facility degradation prediction under imperfect maintenance, even with rare failure events. It overcomes several limitations of classical failure pattern prediction approaches and can reliably simulate the occurrence of rare defects under imperfect maintenance and the effect of inspection reliability caused by human error. Based on the degradation trend pattern prediction, effective maintenance management plans can be practically implemented to minimize the frequency of the occurrence and the consequence of civil facility failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nolan完成签到 ,获得积分10
刚刚
乔孟婷发布了新的文献求助10
1秒前
1秒前
1秒前
Summer完成签到,获得积分10
1秒前
布灵布灵完成签到,获得积分10
3秒前
科研通AI2S应助顺心若魔采纳,获得10
3秒前
3秒前
GYGeorge发布了新的文献求助10
4秒前
wrx关注了科研通微信公众号
6秒前
为Zn发电完成签到,获得积分10
6秒前
wyx发布了新的文献求助10
6秒前
刚睡醒发布了新的文献求助10
7秒前
张江泽发布了新的文献求助10
8秒前
月色完成签到,获得积分10
8秒前
zihanwang应助优雅傲之采纳,获得30
8秒前
guangshuang完成签到 ,获得积分10
8秒前
8秒前
10秒前
10秒前
10秒前
CipherSage应助清秀涵易采纳,获得10
11秒前
13秒前
Mm完成签到,获得积分10
13秒前
大B哥完成签到,获得积分10
14秒前
14秒前
尽如给尽如的求助进行了留言
14秒前
小宝完成签到,获得积分10
14秒前
222完成签到,获得积分10
14秒前
LegendThree发布了新的文献求助10
15秒前
abai发布了新的文献求助10
15秒前
顺心若魔发布了新的文献求助10
15秒前
一生总发布了新的文献求助10
17秒前
GYGeorge完成签到,获得积分10
17秒前
研究生发布了新的文献求助10
18秒前
周周南完成签到 ,获得积分10
18秒前
艾迪富富完成签到,获得积分10
19秒前
20秒前
NexusExplorer应助忧虑的代容采纳,获得10
21秒前
wasttt完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007