Dynamic civil facility degradation prediction for rare defects under imperfect maintenance

可靠性工程 可靠性(半导体) 工程类 隐马尔可夫模型 参数统计 不完美的 计算机科学 预防性维护 统计 人工智能 功率(物理) 物理 语言学 数学 哲学 量子力学
作者
Sou-Sen Leu,Yequn Fu,Pei‐Lin Wu
出处
期刊:Journal of Quality in Maintenance Engineering [Emerald Publishing Limited]
卷期号:30 (1): 81-100
标识
DOI:10.1108/jqme-01-2023-0001
摘要

Purpose This paper aims to develop a dynamic civil facility degradation prediction model to forecast the reliability performance tendency and remaining useful life under imperfect maintenance based on the inspection records and the maintenance actions. Design/methodology/approach A real-time hidden Markov chain (HMM) model is proposed in this paper to predict the reliability performance tendency and remaining useful life under imperfect maintenance based on rare failure events. The model assumes a Poisson arrival pattern for facility failure events occurrence. HMM is further adopted to establish the transmission probabilities among stages. Finally, the simulation inference is conducted using Particle filter (PF) to estimate the most probable model parameters. Water seals at the spillway hydraulic gate in a Taiwan's reservoir are used to examine the appropriateness of the approach. Findings The results of defect probabilities tendency from the real-time HMM model are highly consistent with the real defect trend pattern of civil facilities. The proposed facility degradation prediction model can provide the maintenance division with early warning of potential failure to establish a proper proactive maintenance plan, even under the condition of rare defects. Originality/value This model is a new method of civil facility degradation prediction under imperfect maintenance, even with rare failure events. It overcomes several limitations of classical failure pattern prediction approaches and can reliably simulate the occurrence of rare defects under imperfect maintenance and the effect of inspection reliability caused by human error. Based on the degradation trend pattern prediction, effective maintenance management plans can be practically implemented to minimize the frequency of the occurrence and the consequence of civil facility failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温彪发布了新的文献求助10
1秒前
yuu发布了新的文献求助10
2秒前
2秒前
无私的梦凡完成签到,获得积分10
3秒前
3秒前
充电宝应助小阿玉采纳,获得10
4秒前
科研通AI5应助Ouou采纳,获得30
7秒前
崔万齐发布了新的文献求助10
7秒前
666yj完成签到 ,获得积分10
7秒前
orixero应助浮浮世世采纳,获得10
8秒前
8秒前
Fsy应助读心理学导致的采纳,获得10
11秒前
浮游应助橘子橙子采纳,获得50
11秒前
11秒前
落叶为谁殇完成签到,获得积分10
11秒前
共享精神应助欢呼的映秋采纳,获得30
12秒前
14秒前
14秒前
nenoaowu发布了新的文献求助10
16秒前
zyy发布了新的文献求助30
17秒前
学术疯子发布了新的文献求助10
18秒前
19秒前
露露发布了新的文献求助30
19秒前
20秒前
20秒前
小华安发布了新的文献求助10
21秒前
23秒前
糖醋花孙米完成签到,获得积分10
24秒前
在水一方应助云墨采纳,获得10
24秒前
盛欢发布了新的文献求助10
25秒前
汉堡包应助osh111采纳,获得10
25秒前
科研通AI2S应助西门百招采纳,获得10
26秒前
26秒前
CipherSage应助yurig采纳,获得10
27秒前
27秒前
CodeCraft应助幼汁汁鬼鬼采纳,获得10
27秒前
情怀应助学术混子采纳,获得10
27秒前
28秒前
29秒前
陌路完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194677
求助须知:如何正确求助?哪些是违规求助? 4376939
关于积分的说明 13630885
捐赠科研通 4232153
什么是DOI,文献DOI怎么找? 2321393
邀请新用户注册赠送积分活动 1319546
关于科研通互助平台的介绍 1269917