A generic fundus image enhancement network boosted by frequency self-supervised representation learning

计算机科学 人工智能 眼底(子宫) 瓶颈 计算机视觉 概化理论 判别式 图像(数学) 深度学习 数学 医学 统计 眼科 嵌入式系统
作者
Heng Li,Haofeng Liu,Huazhu Fu,Yanwu Xu,Hai Shu,Ke Niu,Yan Hu,Jiang Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:90: 102945-102945 被引量:4
标识
DOI:10.1016/j.media.2023.102945
摘要

Fundus photography is prone to suffer from image quality degradation that impacts clinical examination performed by ophthalmologists or intelligent systems. Though enhancement algorithms have been developed to promote fundus observation on degraded images, high data demands and limited applicability hinder their clinical deployment. To circumvent this bottleneck, a generic fundus image enhancement network (GFE-Net) is developed in this study to robustly correct unknown fundus images without supervised or extra data. Levering image frequency information, self-supervised representation learning is conducted to learn robust structure-aware representations from degraded images. Then with a seamless architecture that couples representation learning and image enhancement, GFE-Net can accurately correct fundus images and meanwhile preserve retinal structures. Comprehensive experiments are implemented to demonstrate the effectiveness and advantages of GFE-Net. Compared with state-of-the-art algorithms, GFE-Net achieves superior performance in data dependency, enhancement performance, deployment efficiency, and scale generalizability. Follow-up fundus image analysis is also facilitated by GFE-Net, whose modules are respectively verified to be effective for image enhancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10发布了新的文献求助10
1秒前
2秒前
2秒前
韩1完成签到,获得积分10
2秒前
迷你的代秋完成签到,获得积分10
3秒前
nini发布了新的文献求助30
3秒前
4秒前
十八发布了新的文献求助10
5秒前
甜甜玫瑰应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
ylc发布了新的文献求助10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
kun完成签到,获得积分10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
gggghhhh发布了新的文献求助10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
甜甜玫瑰应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
乐乐应助科研通管家采纳,获得30
7秒前
IBMffff应助科研通管家采纳,获得20
7秒前
ding应助科研通管家采纳,获得10
7秒前
小鲤鱼吃大菠萝完成签到,获得积分10
7秒前
ZHANG_Kun完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
Hello应助liu采纳,获得10
11秒前
11秒前
烟花应助10采纳,获得10
13秒前
123发布了新的文献求助10
13秒前
nini完成签到,获得积分10
13秒前
优雅山柏发布了新的文献求助10
14秒前
翻翻发布了新的文献求助10
15秒前
edtaa完成签到 ,获得积分10
17秒前
17秒前
lgh发布了新的文献求助10
17秒前
19秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079