Sodium Layered/Tunnel Intergrowth Oxide Cathodes: Formation Process, Interlocking Chemistry, and Electrochemical Performance

阴极 材料科学 联锁 电化学 氧化物 结构稳定性 热稳定性 化学工程 电极 纳米技术 冶金 化学 机械工程 结构工程 物理化学 工程类
作者
Yu Su,Ningning Zhang,Jiayang Li,Yi‐Feng Liu,Haiyan Hu,Jingqiang Wang,Hongwei Li,Ling‐Yi Kong,Xin‐Bei Jia,Yan‐Fang Zhu,Shuangqiang Chen,Jiazhao Wang,Shi Xue Dou,Shulei Chou,Yao Xiao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (38): 44839-44847 被引量:9
标识
DOI:10.1021/acsami.3c07164
摘要

Manganese-based layered oxides are prospective cathode materials for sodium-ion batteries (SIBs) due to their low cost and high theoretical capacities. The biphasic intergrowth structure of layered cathode materials is essential for improving the sodium storage performance, which is attributed to the synergistic effect between the two phases. However, the in-depth formation mechanism of biphasic intergrowth materials remains unclear. Herein, the layered/tunnel intergrowth Na0.6MnO2 (LT-NaMO) as a model material was successfully prepared, and their formation processes and electrochemical performance were systematically investigated. In situ high-temperature X-ray diffraction displays the detailed evolution process and excellent thermal stability of the layered/tunnel intergrowth structure. Furthermore, severe structural strain and large lattice volume changes are significantly mitigated by the interlocking effect between the phase interfaces, which further enhances the structural stability of the cathode materials during the charging/discharging process. Consequently, the LT-NaMO cathode displays fast Na+ transport kinetics with a remarkable capacity retention of ∼70.5% over 300 cycles at 5C, and its assembled full cell with hard carbon also exhibits high energy density. These findings highlight the superior electrochemical performance of intergrowth materials due to interlocking effects between layered and tunnel structures and also provide unique insights into the construction of intergrowth cathode materials for SIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Annabelame完成签到,获得积分10
刚刚
1秒前
魏某某发布了新的文献求助10
1秒前
1秒前
1秒前
usrcu完成签到 ,获得积分10
3秒前
CipherSage应助Nancy采纳,获得10
3秒前
许熙完成签到,获得积分10
4秒前
汉堡包应助1leven采纳,获得10
4秒前
诚心路灯发布了新的文献求助20
4秒前
Akim应助yulian采纳,获得10
4秒前
明亮飞双发布了新的文献求助20
4秒前
龙大完成签到,获得积分10
5秒前
科研通AI2S应助tt825采纳,获得10
5秒前
5秒前
让时间说真话完成签到,获得积分10
6秒前
未来可期发布了新的文献求助100
6秒前
7秒前
7秒前
ddd完成签到,获得积分10
7秒前
迅速的巧曼完成签到 ,获得积分10
8秒前
8秒前
烟尘完成签到,获得积分10
9秒前
852应助喝可乐的萝卜兔采纳,获得10
9秒前
酷酷亦凝完成签到 ,获得积分10
9秒前
没有锁骨的丑丑完成签到,获得积分10
10秒前
King强完成签到,获得积分10
10秒前
klb13应助114422采纳,获得10
10秒前
可爱安筠发布了新的文献求助10
10秒前
烟花应助Erizer采纳,获得10
10秒前
狂野的化蛹完成签到,获得积分10
11秒前
future完成签到 ,获得积分10
11秒前
12秒前
1a完成签到 ,获得积分10
12秒前
12秒前
13秒前
淡淡亦丝完成签到,获得积分10
13秒前
Bressanone完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262073
求助须知:如何正确求助?哪些是违规求助? 2902832
关于积分的说明 8322686
捐赠科研通 2572845
什么是DOI,文献DOI怎么找? 1397879
科研通“疑难数据库(出版商)”最低求助积分说明 653925
邀请新用户注册赠送积分活动 632489