Domain-aware Prototype Network for Generalized Zero-Shot Learning

计算机科学 人工智能 嵌入 语义学(计算机科学) 班级(哲学) 特征(语言学) 编码器 领域(数学分析) 光学(聚焦) 特征向量 模式识别(心理学) 机器学习 特征学习 特征提取 数学 操作系统 光学 物理 数学分析 哲学 程序设计语言 语言学
作者
Yongli Hu,Lincong Feng,Huajie Jiang,Mengting Liu,Baocai Yin
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3180-3191 被引量:2
标识
DOI:10.1109/tcsvt.2023.3313727
摘要

Generalized zero-shot learning(GZSL) aims to recognize images from seen and unseen classes with side information, such as manually annotated attribute vectors. Traditional methods focus on mapping images and semantics into a common latent space, thus achieving the visual-semantics alignment. Since the unseen classes are unavailable during training, there is a serious problem of recognition bias, which will tend to recognize unseen classes as seen classes. To solve this problem, we propose a Domain-aware Prototype Network(DPN), which splits the GZSL problem into the seen class recognition and unseen class recognition problem. For the seen classes, we design a domain-aware prototype learning branch with a dual attention feature encoder to capture the essential visual information, which aims to recognize the seen classes and discriminate the novel categories. To further recognize the fine-grained unseen classes, a visual-semantic embedding branch is designed, which aims to align the visual and semantic information for unseen-class recognition. Through the multi-task learning of the prototype learning branch and visual-semantic embedding branch, our model can achieve excellent performance on three popular GZSL datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
蓝意完成签到,获得积分0
3秒前
xiaohongmao完成签到,获得积分10
8秒前
11秒前
qweerrtt完成签到,获得积分10
18秒前
18秒前
与共发布了新的文献求助10
19秒前
carly完成签到 ,获得积分10
20秒前
颢懿完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
26秒前
ljc完成签到 ,获得积分10
27秒前
Java完成签到,获得积分10
31秒前
33秒前
鲤鱼安青完成签到 ,获得积分10
35秒前
35秒前
dollarpuff完成签到 ,获得积分10
38秒前
38秒前
mmmmmMM完成签到,获得积分10
45秒前
luckweb完成签到,获得积分10
51秒前
猫的毛完成签到 ,获得积分10
52秒前
nicky完成签到 ,获得积分10
53秒前
麦子完成签到 ,获得积分10
54秒前
54秒前
Wilson完成签到 ,获得积分10
55秒前
luckweb发布了新的文献求助10
55秒前
55秒前
59秒前
1分钟前
传奇3应助wujiwuhui采纳,获得10
1分钟前
开心寄松完成签到,获得积分10
1分钟前
北宫完成签到 ,获得积分10
1分钟前
wansida完成签到,获得积分10
1分钟前
QXS完成签到 ,获得积分10
1分钟前
1分钟前
菠萝完成签到 ,获得积分10
1分钟前
领导范儿应助Villanellel采纳,获得10
1分钟前
wintersss完成签到,获得积分10
1分钟前
尹尹发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022