亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain-aware Prototype Network for Generalized Zero-Shot Learning

计算机科学 人工智能 嵌入 语义学(计算机科学) 班级(哲学) 特征(语言学) 编码器 领域(数学分析) 光学(聚焦) 特征向量 模式识别(心理学) 机器学习 特征学习 特征提取 数学 数学分析 哲学 语言学 物理 光学 程序设计语言 操作系统
作者
Yongli Hu,Lincong Feng,Huajie Jiang,Mengting Liu,Baocai Yin
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3180-3191 被引量:2
标识
DOI:10.1109/tcsvt.2023.3313727
摘要

Generalized zero-shot learning(GZSL) aims to recognize images from seen and unseen classes with side information, such as manually annotated attribute vectors. Traditional methods focus on mapping images and semantics into a common latent space, thus achieving the visual-semantics alignment. Since the unseen classes are unavailable during training, there is a serious problem of recognition bias, which will tend to recognize unseen classes as seen classes. To solve this problem, we propose a Domain-aware Prototype Network(DPN), which splits the GZSL problem into the seen class recognition and unseen class recognition problem. For the seen classes, we design a domain-aware prototype learning branch with a dual attention feature encoder to capture the essential visual information, which aims to recognize the seen classes and discriminate the novel categories. To further recognize the fine-grained unseen classes, a visual-semantic embedding branch is designed, which aims to align the visual and semantic information for unseen-class recognition. Through the multi-task learning of the prototype learning branch and visual-semantic embedding branch, our model can achieve excellent performance on three popular GZSL datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小李驳回了华仔应助
20秒前
23秒前
Criminology34应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
嘟嘟嘟嘟发布了新的文献求助10
37秒前
38秒前
bai完成签到 ,获得积分10
39秒前
优美香露发布了新的文献求助10
1分钟前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
答辩完成签到 ,获得积分10
1分钟前
1分钟前
AXX041795发布了新的文献求助10
1分钟前
小鸟芋圆露露完成签到 ,获得积分0
1分钟前
maprang完成签到,获得积分10
1分钟前
美琦发布了新的文献求助10
1分钟前
情怀应助大艺术家吞吞采纳,获得10
1分钟前
小李要上岸完成签到,获得积分10
1分钟前
howgoods完成签到 ,获得积分10
1分钟前
1分钟前
小李发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
大模型应助AXX041795采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
优美香露发布了新的文献求助10
2分钟前
小二郎应助annathd采纳,获得10
2分钟前
2分钟前
2分钟前
annathd发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723793
求助须知:如何正确求助?哪些是违规求助? 5281025
关于积分的说明 15299145
捐赠科研通 4872071
什么是DOI,文献DOI怎么找? 2616558
邀请新用户注册赠送积分活动 1566354
关于科研通互助平台的介绍 1523235