Nanorod length-dependent photodriven H2 production in 1D CdS–Pt heterostructures

纳米棒 量子点 异质结 量子效率 材料科学 半导体 电子 能量转换效率 光电子学 分子物理学 纳米技术 物理 量子力学
作者
Y.C. Liu,Wenxing Yang,Qiaoli Chen,Zhaoxiong Xie,Tianquan Lian
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (10) 被引量:5
标识
DOI:10.1063/5.0157927
摘要

Colloidal quantum confined semiconductor-metal heterostructures are promising candidates for solar energy conversion because their light absorbing semiconductor and catalytic components can be independently tuned and optimized. Although the light-to-hydrogen efficiencies of such systems have shown interesting dependences on the morphologies of the semiconductor and metal domains, the mechanisms of such dependences are poorly understood. Here, we use Pt tipped 0D CdS quantum dots (with ∼4.6 nm diameter) and 1D CdS nanorods (of ∼13.8, 27.8, 66.6, and 88.9 nm average rod lengths) as a model system to study the distance-dependence of charge separation and charge recombination times and their impacts on photo-driven H2 production. The H2 generation quantum efficiency increases from 0.2% ± 0.0% in quantum dots to 28.9% ± 0.4% at a rod length of 28 nm and shows negligible changes at longer rod lengths. The half-life time of electron transfer from CdS to Pt increases monotonically with rod length, from 0.7 ± 0.1 in quantum dots to 170.2 ± 29.5 ps in the longest rods, corresponding to a slight decrease in electron transfer quantum efficiency from 92% to 81%. The amplitude-weighted average lifetime of charge recombination of the electron in Pt with the hole in CdS increases from 4.7 ± 0.4 µs in quantum dots to 149 ± 34 µs in 28 nm nanorods, and the lifetime does not increase further in longer rods, resembling the trend in the observed H2 generation quantum efficiency. Our result suggests that the competition of the charge recombination process with the hole removal by the sacrificial electron donor plays a dominant role in the observed nanorod length dependent overall light driven H2 generation quantum efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的芷珊完成签到 ,获得积分10
刚刚
刚刚
刚刚
且歌行完成签到,获得积分0
1秒前
1秒前
方圆几里发布了新的文献求助30
1秒前
2秒前
淡然醉冬完成签到,获得积分10
3秒前
糟糕的问儿完成签到,获得积分10
3秒前
善学以致用应助七只狐狸采纳,获得10
3秒前
lan发布了新的文献求助10
3秒前
4秒前
aoi完成签到 ,获得积分10
4秒前
4秒前
小巧灯泡完成签到,获得积分10
4秒前
xielixin2001发布了新的文献求助10
5秒前
5秒前
小聒完成签到 ,获得积分10
5秒前
科研通AI5应助wangjw采纳,获得10
5秒前
汉堡包应助冰西瓜最棒_采纳,获得10
5秒前
nuistd完成签到,获得积分10
6秒前
长琴思顾发布了新的文献求助10
6秒前
浮名半生完成签到,获得积分10
6秒前
6秒前
阿飘应助Dovahcode采纳,获得10
6秒前
jygjhgy完成签到,获得积分10
6秒前
7秒前
123b发布了新的文献求助10
7秒前
8秒前
细心平卉发布了新的文献求助10
8秒前
CipherSage应助shimly0101xx采纳,获得10
8秒前
JamesPei应助曙光森林采纳,获得10
9秒前
9秒前
Allen完成签到,获得积分10
9秒前
科研小刘完成签到,获得积分10
10秒前
百里千秋完成签到,获得积分10
10秒前
11秒前
11秒前
LCS发布了新的文献求助10
11秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746550
求助须知:如何正确求助?哪些是违规求助? 3289414
关于积分的说明 10064441
捐赠科研通 3005751
什么是DOI,文献DOI怎么找? 1650393
邀请新用户注册赠送积分活动 785863
科研通“疑难数据库(出版商)”最低求助积分说明 751335