Deep unsupervised part-whole relational visual saliency

计算机科学 人工智能 模式识别(心理学)
作者
Yi Liu,Xiaohui Dong,Dingwen Zhang,Shoukun Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:563: 126916-126916 被引量:66
标识
DOI:10.1016/j.neucom.2023.126916
摘要

Deep Supervised Salient Object Detection (SSOD) excessively relies on large-scale annotated pixel-level labels which consume intensive labour acquiring high quality labels. In such precondition, deep Unsupervised Salient Object Detection (USOD) draws public attention. Under the framework of the existing deep USOD methods, they mostly generate pseudo labels by fusing several hand-crafted detectors’ results. On top of that, a Fully Convolutional Network (FCN) will be trained to detect salient regions separately. While the existing USOD methods have achieved some progress, there are still challenges for them towards satisfactory performance on the complex scene, including (1) poor object wholeness owing to neglecting the hierarchy of those salient regions; (2) unsatisfactory pseudo labels causing by unprimitive fusion of hand-crafted results. To address these issues, in this paper, we introduce the property of part-whole relations endowed by a Belief Capsule Network (BCNet) for deep USOD, which is achieved by a multi-stream capsule routing strategy with a belief score for each stream within the CapsNets architecture. To train BCNet well, we generate high-quality pseudo labels from multiple hand-crafted detectors by developing a consistency-aware fusion strategy. Concretely, a weeding out criterion is first defined to filter out unreliable training samples based on the inter-method consistency among four hand-crafted saliency maps. In the following, a dynamic fusion mechanism is designed to generate high-quality pseudo labels from the remaining samples for BCNet training. Experiments on five public datasets illustrate the superiority of the proposed method. Codes have been released on: https://github.com/Mirlongue/Deep-Unsupervised-Part-Whole-Relational-Visual-Saliency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
面面完成签到,获得积分10
1秒前
零零完成签到,获得积分10
1秒前
zyj关注了科研通微信公众号
1秒前
小兰花发布了新的文献求助10
1秒前
1秒前
zhangpeng完成签到,获得积分10
1秒前
德玛西亚完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
愉快寄翠发布了新的文献求助10
2秒前
2秒前
momo完成签到,获得积分10
2秒前
嫁接诺贝尔应助LTW采纳,获得10
2秒前
科目三应助yi采纳,获得10
2秒前
包容元芹发布了新的文献求助10
3秒前
最爱小胖宝的大胖宝完成签到,获得积分10
4秒前
Nikki发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
SciGPT应助面面采纳,获得10
5秒前
SIDEsss发布了新的文献求助10
5秒前
5秒前
牧童羽完成签到,获得积分10
6秒前
李爱国应助睦月采纳,获得10
7秒前
俊逸若之发布了新的文献求助10
7秒前
隐形曼青应助yy采纳,获得10
7秒前
汉堡包应助yayaya采纳,获得10
7秒前
7秒前
潇洒凡柔完成签到 ,获得积分10
7秒前
8秒前
魔音甜菜发布了新的文献求助10
8秒前
砡君完成签到,获得积分10
8秒前
科研通AI6应助know采纳,获得10
8秒前
august发布了新的文献求助10
8秒前
xc完成签到,获得积分10
9秒前
笨笨百招完成签到,获得积分10
9秒前
9秒前
squeak完成签到,获得积分10
9秒前
完美世界应助牧童羽采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624261
求助须知:如何正确求助?哪些是违规求助? 4710125
关于积分的说明 14949526
捐赠科研通 4778199
什么是DOI,文献DOI怎么找? 2553176
邀请新用户注册赠送积分活动 1515094
关于科研通互助平台的介绍 1475490