Deep unsupervised part-whole relational visual saliency

计算机科学 人工智能 模式识别(心理学)
作者
Yi Liu,Xiaohui Dong,Dingwen Zhang,Shoukun Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:563: 126916-126916 被引量:66
标识
DOI:10.1016/j.neucom.2023.126916
摘要

Deep Supervised Salient Object Detection (SSOD) excessively relies on large-scale annotated pixel-level labels which consume intensive labour acquiring high quality labels. In such precondition, deep Unsupervised Salient Object Detection (USOD) draws public attention. Under the framework of the existing deep USOD methods, they mostly generate pseudo labels by fusing several hand-crafted detectors’ results. On top of that, a Fully Convolutional Network (FCN) will be trained to detect salient regions separately. While the existing USOD methods have achieved some progress, there are still challenges for them towards satisfactory performance on the complex scene, including (1) poor object wholeness owing to neglecting the hierarchy of those salient regions; (2) unsatisfactory pseudo labels causing by unprimitive fusion of hand-crafted results. To address these issues, in this paper, we introduce the property of part-whole relations endowed by a Belief Capsule Network (BCNet) for deep USOD, which is achieved by a multi-stream capsule routing strategy with a belief score for each stream within the CapsNets architecture. To train BCNet well, we generate high-quality pseudo labels from multiple hand-crafted detectors by developing a consistency-aware fusion strategy. Concretely, a weeding out criterion is first defined to filter out unreliable training samples based on the inter-method consistency among four hand-crafted saliency maps. In the following, a dynamic fusion mechanism is designed to generate high-quality pseudo labels from the remaining samples for BCNet training. Experiments on five public datasets illustrate the superiority of the proposed method. Codes have been released on: https://github.com/Mirlongue/Deep-Unsupervised-Part-Whole-Relational-Visual-Saliency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sunryaes完成签到 ,获得积分10
1秒前
虚幻君浩发布了新的文献求助10
1秒前
von发布了新的文献求助30
2秒前
科研豆发布了新的文献求助10
2秒前
科研通AI6应助dawei采纳,获得10
3秒前
慕青应助WYH采纳,获得10
3秒前
小徐发布了新的文献求助10
3秒前
刻苦冰颜完成签到,获得积分20
3秒前
汉堡包应助xdf00采纳,获得10
4秒前
4秒前
WQR发布了新的文献求助10
4秒前
4秒前
零李晃晃发布了新的文献求助10
4秒前
feiline发布了新的文献求助10
4秒前
科研通AI6应助kids采纳,获得10
5秒前
5秒前
5秒前
云朵完成签到 ,获得积分20
6秒前
6秒前
6秒前
边缘发布了新的文献求助10
7秒前
哈哈悦发布了新的文献求助10
7秒前
Zhongyu发布了新的文献求助10
8秒前
8秒前
隐形曼青应助小蚊子采纳,获得10
8秒前
8秒前
科研通AI2S应助小李采纳,获得10
8秒前
8秒前
Roxxane发布了新的文献求助10
8秒前
伍志伟完成签到,获得积分10
9秒前
兰先生发布了新的文献求助10
9秒前
kk发布了新的文献求助10
10秒前
标致白卉完成签到,获得积分10
10秒前
10秒前
czcz-sustech完成签到,获得积分10
10秒前
赵星瑶发布了新的文献求助10
10秒前
11秒前
11秒前
iNk应助badercao采纳,获得40
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588003
求助须知:如何正确求助?哪些是违规求助? 4671093
关于积分的说明 14785596
捐赠科研通 4624167
什么是DOI,文献DOI怎么找? 2531527
邀请新用户注册赠送积分活动 1500191
关于科研通互助平台的介绍 1468200