Deep unsupervised part-whole relational visual saliency

计算机科学 人工智能 模式识别(心理学)
作者
Yi Liu,Xiaohui Dong,Dingwen Zhang,Shoukun Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:563: 126916-126916 被引量:66
标识
DOI:10.1016/j.neucom.2023.126916
摘要

Deep Supervised Salient Object Detection (SSOD) excessively relies on large-scale annotated pixel-level labels which consume intensive labour acquiring high quality labels. In such precondition, deep Unsupervised Salient Object Detection (USOD) draws public attention. Under the framework of the existing deep USOD methods, they mostly generate pseudo labels by fusing several hand-crafted detectors’ results. On top of that, a Fully Convolutional Network (FCN) will be trained to detect salient regions separately. While the existing USOD methods have achieved some progress, there are still challenges for them towards satisfactory performance on the complex scene, including (1) poor object wholeness owing to neglecting the hierarchy of those salient regions; (2) unsatisfactory pseudo labels causing by unprimitive fusion of hand-crafted results. To address these issues, in this paper, we introduce the property of part-whole relations endowed by a Belief Capsule Network (BCNet) for deep USOD, which is achieved by a multi-stream capsule routing strategy with a belief score for each stream within the CapsNets architecture. To train BCNet well, we generate high-quality pseudo labels from multiple hand-crafted detectors by developing a consistency-aware fusion strategy. Concretely, a weeding out criterion is first defined to filter out unreliable training samples based on the inter-method consistency among four hand-crafted saliency maps. In the following, a dynamic fusion mechanism is designed to generate high-quality pseudo labels from the remaining samples for BCNet training. Experiments on five public datasets illustrate the superiority of the proposed method. Codes have been released on: https://github.com/Mirlongue/Deep-Unsupervised-Part-Whole-Relational-Visual-Saliency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助胡不归采纳,获得10
刚刚
无花果应助Ray采纳,获得10
1秒前
夏安发布了新的文献求助10
2秒前
berry完成签到,获得积分10
2秒前
wby完成签到 ,获得积分10
3秒前
Danqing发布了新的文献求助10
3秒前
5秒前
今后应助77采纳,获得10
5秒前
smile完成签到 ,获得积分10
5秒前
xinran1关注了科研通微信公众号
6秒前
7秒前
zzzzz完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
能干的尔柳完成签到,获得积分10
8秒前
诚心映冬发布了新的文献求助10
9秒前
卡卡发布了新的文献求助60
9秒前
9秒前
10秒前
10秒前
wby关注了科研通微信公众号
11秒前
wby关注了科研通微信公众号
11秒前
缘之空空完成签到,获得积分10
12秒前
BEYOND啊发布了新的文献求助10
12秒前
12秒前
JamesPei应助不爱吃米饭采纳,获得10
13秒前
Danqing完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
华仔应助ll采纳,获得10
15秒前
16秒前
跳跃的冷卉完成签到 ,获得积分10
16秒前
77发布了新的文献求助10
16秒前
灵巧晓亦发布了新的文献求助10
18秒前
18秒前
小蘑菇应助Waris采纳,获得10
19秒前
派123发布了新的文献求助10
20秒前
菌酱发布了新的文献求助10
21秒前
打打应助Wawoo采纳,获得10
21秒前
23秒前
稳重面包发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679807
求助须知:如何正确求助?哪些是违规求助? 4994283
关于积分的说明 15170995
捐赠科研通 4839641
什么是DOI,文献DOI怎么找? 2593522
邀请新用户注册赠送积分活动 1546577
关于科研通互助平台的介绍 1504709