Deep unsupervised part-whole relational visual saliency

计算机科学 人工智能 模式识别(心理学)
作者
Yi Liu,Xiaohui Dong,Dingwen Zhang,Shoukun Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:563: 126916-126916 被引量:66
标识
DOI:10.1016/j.neucom.2023.126916
摘要

Deep Supervised Salient Object Detection (SSOD) excessively relies on large-scale annotated pixel-level labels which consume intensive labour acquiring high quality labels. In such precondition, deep Unsupervised Salient Object Detection (USOD) draws public attention. Under the framework of the existing deep USOD methods, they mostly generate pseudo labels by fusing several hand-crafted detectors’ results. On top of that, a Fully Convolutional Network (FCN) will be trained to detect salient regions separately. While the existing USOD methods have achieved some progress, there are still challenges for them towards satisfactory performance on the complex scene, including (1) poor object wholeness owing to neglecting the hierarchy of those salient regions; (2) unsatisfactory pseudo labels causing by unprimitive fusion of hand-crafted results. To address these issues, in this paper, we introduce the property of part-whole relations endowed by a Belief Capsule Network (BCNet) for deep USOD, which is achieved by a multi-stream capsule routing strategy with a belief score for each stream within the CapsNets architecture. To train BCNet well, we generate high-quality pseudo labels from multiple hand-crafted detectors by developing a consistency-aware fusion strategy. Concretely, a weeding out criterion is first defined to filter out unreliable training samples based on the inter-method consistency among four hand-crafted saliency maps. In the following, a dynamic fusion mechanism is designed to generate high-quality pseudo labels from the remaining samples for BCNet training. Experiments on five public datasets illustrate the superiority of the proposed method. Codes have been released on: https://github.com/Mirlongue/Deep-Unsupervised-Part-Whole-Relational-Visual-Saliency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
寻舟者发布了新的文献求助10
1秒前
1秒前
英俊白莲发布了新的文献求助10
2秒前
2秒前
穆行恶发布了新的文献求助10
3秒前
充电宝应助巡音幻夜采纳,获得10
3秒前
3秒前
3秒前
田様应助尤寄风采纳,获得10
4秒前
考拉完成签到,获得积分10
4秒前
19941210完成签到,获得积分20
4秒前
自然沁发布了新的文献求助10
4秒前
tang完成签到 ,获得积分10
5秒前
孙晓芳完成签到 ,获得积分10
5秒前
5秒前
5秒前
机器猫nzy发布了新的文献求助10
6秒前
Groves完成签到 ,获得积分10
8秒前
在水一方应助单薄的飞风采纳,获得10
8秒前
shhoing应助Ernest奶爸采纳,获得10
8秒前
A徽发布了新的文献求助10
8秒前
烟花应助张必雨采纳,获得10
9秒前
kai完成签到,获得积分20
9秒前
9秒前
9秒前
小二郎应助糟糕的颜采纳,获得10
9秒前
starlx0813完成签到 ,获得积分10
9秒前
lsl完成签到,获得积分10
10秒前
搜集达人应助英俊白莲采纳,获得10
10秒前
李沐唅发布了新的文献求助10
10秒前
水分子完成签到 ,获得积分10
11秒前
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Clarence0320完成签到,获得积分10
13秒前
Feng发布了新的文献求助10
13秒前
wangli发布了新的文献求助10
13秒前
丘比特应助Lee采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551876
求助须知:如何正确求助?哪些是违规求助? 4636641
关于积分的说明 14645054
捐赠科研通 4578515
什么是DOI,文献DOI怎么找? 2510927
邀请新用户注册赠送积分活动 1486179
关于科研通互助平台的介绍 1457464