Deep unsupervised part-whole relational visual saliency

计算机科学 人工智能 一致性(知识库) 突出 深度学习 质量(理念) 对象(语法) 滤波器(信号处理) 判别式 卷积神经网络 等级制度 财产(哲学) 模式识别(心理学) 机器学习 计算机视觉 哲学 认识论 经济 市场经济
作者
Yi Liu,Dong Xiang,Dingwen Zhang,Sugang Xu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:563: 126916-126916 被引量:3
标识
DOI:10.1016/j.neucom.2023.126916
摘要

Deep Supervised Salient Object Detection (SSOD) excessively relies on large-scale annotated pixel-level labels which consume intensive labour acquiring high quality labels. In such precondition, deep Unsupervised Salient Object Detection (USOD) draws public attention. Under the framework of the existing deep USOD methods, they mostly generate pseudo labels by fusing several hand-crafted detectors’ results. On top of that, a Fully Convolutional Network (FCN) will be trained to detect salient regions separately. While the existing USOD methods have achieved some progress, there are still challenges for them towards satisfactory performance on the complex scene, including (1) poor object wholeness owing to neglecting the hierarchy of those salient regions; (2) unsatisfactory pseudo labels causing by unprimitive fusion of hand-crafted results. To address these issues, in this paper, we introduce the property of part-whole relations endowed by a Belief Capsule Network (BCNet) for deep USOD, which is achieved by a multi-stream capsule routing strategy with a belief score for each stream within the CapsNets architecture. To train BCNet well, we generate high-quality pseudo labels from multiple hand-crafted detectors by developing a consistency-aware fusion strategy. Concretely, a weeding out criterion is first defined to filter out unreliable training samples based on the inter-method consistency among four hand-crafted saliency maps. In the following, a dynamic fusion mechanism is designed to generate high-quality pseudo labels from the remaining samples for BCNet training. Experiments on five public datasets illustrate the superiority of the proposed method. Codes have been released on: https://github.com/Mirlongue/Deep-Unsupervised-Part-Whole-Relational-Visual-Saliency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆凡阳发布了新的文献求助10
刚刚
张雯思给张雯思的求助进行了留言
1秒前
gsj关闭了gsj文献求助
3秒前
wa_wa_wa发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
乐乐应助伯赏觅翠采纳,获得10
9秒前
10秒前
贪玩的野狍子关注了科研通微信公众号
10秒前
11秒前
11秒前
暖小阳完成签到,获得积分10
12秒前
周星星发布了新的文献求助10
12秒前
12秒前
积极灵薇发布了新的文献求助20
12秒前
77发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
18秒前
却之不恭6253完成签到,获得积分10
18秒前
周海江发布了新的文献求助10
19秒前
冰水混合物完成签到,获得积分10
19秒前
路小黑完成签到 ,获得积分10
20秒前
21秒前
21秒前
Nozomi发布了新的文献求助10
21秒前
hang完成签到,获得积分10
21秒前
带善人发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
23秒前
23秒前
24秒前
24秒前
华仔应助song_song采纳,获得10
25秒前
齐天大圣应助五六七采纳,获得150
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174