Deep unsupervised part-whole relational visual saliency

计算机科学 人工智能 一致性(知识库) 突出 深度学习 质量(理念) 对象(语法) 滤波器(信号处理) 判别式 卷积神经网络 等级制度 财产(哲学) 模式识别(心理学) 机器学习 计算机视觉 哲学 认识论 经济 市场经济
作者
Yi Liu,Dong Xiang,Dingwen Zhang,Sugang Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:563: 126916-126916 被引量:3
标识
DOI:10.1016/j.neucom.2023.126916
摘要

Deep Supervised Salient Object Detection (SSOD) excessively relies on large-scale annotated pixel-level labels which consume intensive labour acquiring high quality labels. In such precondition, deep Unsupervised Salient Object Detection (USOD) draws public attention. Under the framework of the existing deep USOD methods, they mostly generate pseudo labels by fusing several hand-crafted detectors’ results. On top of that, a Fully Convolutional Network (FCN) will be trained to detect salient regions separately. While the existing USOD methods have achieved some progress, there are still challenges for them towards satisfactory performance on the complex scene, including (1) poor object wholeness owing to neglecting the hierarchy of those salient regions; (2) unsatisfactory pseudo labels causing by unprimitive fusion of hand-crafted results. To address these issues, in this paper, we introduce the property of part-whole relations endowed by a Belief Capsule Network (BCNet) for deep USOD, which is achieved by a multi-stream capsule routing strategy with a belief score for each stream within the CapsNets architecture. To train BCNet well, we generate high-quality pseudo labels from multiple hand-crafted detectors by developing a consistency-aware fusion strategy. Concretely, a weeding out criterion is first defined to filter out unreliable training samples based on the inter-method consistency among four hand-crafted saliency maps. In the following, a dynamic fusion mechanism is designed to generate high-quality pseudo labels from the remaining samples for BCNet training. Experiments on five public datasets illustrate the superiority of the proposed method. Codes have been released on: https://github.com/Mirlongue/Deep-Unsupervised-Part-Whole-Relational-Visual-Saliency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助JJJ采纳,获得10
4秒前
4秒前
jf关注了科研通微信公众号
5秒前
金条完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
要减肥白开水完成签到,获得积分10
8秒前
ChristineJay完成签到,获得积分10
8秒前
20010完成签到,获得积分10
9秒前
SixDogs发布了新的文献求助13
10秒前
10秒前
搞笑地雷完成签到 ,获得积分10
10秒前
11完成签到,获得积分10
11秒前
贺格平发布了新的文献求助10
11秒前
小董完成签到,获得积分20
14秒前
BENpao123发布了新的文献求助10
14秒前
所所应助无问西东采纳,获得10
15秒前
15秒前
16秒前
bombing2048完成签到 ,获得积分10
17秒前
Hello应助谦让寄容采纳,获得10
17秒前
香蕉觅云应助Wenyilong采纳,获得10
17秒前
19秒前
lml发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
刻苦秋尽完成签到,获得积分20
20秒前
空白发布了新的文献求助10
20秒前
justin完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
科研通AI6应助lex采纳,获得10
22秒前
23秒前
Darius发布了新的文献求助10
24秒前
24秒前
CodeCraft应助现代芷波采纳,获得10
24秒前
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648