亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep unsupervised part-whole relational visual saliency

计算机科学 人工智能 一致性(知识库) 突出 深度学习 质量(理念) 对象(语法) 滤波器(信号处理) 判别式 卷积神经网络 等级制度 财产(哲学) 模式识别(心理学) 机器学习 计算机视觉 哲学 认识论 经济 市场经济
作者
Yi Liu,Dong Xiang,Dingwen Zhang,Sugang Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:563: 126916-126916 被引量:3
标识
DOI:10.1016/j.neucom.2023.126916
摘要

Deep Supervised Salient Object Detection (SSOD) excessively relies on large-scale annotated pixel-level labels which consume intensive labour acquiring high quality labels. In such precondition, deep Unsupervised Salient Object Detection (USOD) draws public attention. Under the framework of the existing deep USOD methods, they mostly generate pseudo labels by fusing several hand-crafted detectors’ results. On top of that, a Fully Convolutional Network (FCN) will be trained to detect salient regions separately. While the existing USOD methods have achieved some progress, there are still challenges for them towards satisfactory performance on the complex scene, including (1) poor object wholeness owing to neglecting the hierarchy of those salient regions; (2) unsatisfactory pseudo labels causing by unprimitive fusion of hand-crafted results. To address these issues, in this paper, we introduce the property of part-whole relations endowed by a Belief Capsule Network (BCNet) for deep USOD, which is achieved by a multi-stream capsule routing strategy with a belief score for each stream within the CapsNets architecture. To train BCNet well, we generate high-quality pseudo labels from multiple hand-crafted detectors by developing a consistency-aware fusion strategy. Concretely, a weeding out criterion is first defined to filter out unreliable training samples based on the inter-method consistency among four hand-crafted saliency maps. In the following, a dynamic fusion mechanism is designed to generate high-quality pseudo labels from the remaining samples for BCNet training. Experiments on five public datasets illustrate the superiority of the proposed method. Codes have been released on: https://github.com/Mirlongue/Deep-Unsupervised-Part-Whole-Relational-Visual-Saliency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲸jing完成签到,获得积分10
1秒前
任性的冷梅完成签到,获得积分10
4秒前
土豆土豆发布了新的文献求助30
23秒前
CodeCraft应助机灵的小云酱采纳,获得10
29秒前
LXZ完成签到,获得积分10
31秒前
40秒前
44秒前
47秒前
wang发布了新的文献求助10
50秒前
cc关闭了cc文献求助
54秒前
1分钟前
wxq关注了科研通微信公众号
1分钟前
可乐完成签到,获得积分10
1分钟前
maher完成签到 ,获得积分10
1分钟前
1分钟前
可乐发布了新的文献求助10
1分钟前
wxq发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得20
1分钟前
1分钟前
烟花应助xxxhhh采纳,获得10
1分钟前
stupidZ完成签到,获得积分10
1分钟前
2分钟前
靓丽的冰旋完成签到,获得积分10
2分钟前
咸鱼lmye发布了新的文献求助10
2分钟前
2分钟前
cc发布了新的文献求助10
2分钟前
大个应助砖砖采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
雯雯完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
兼听则明完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463262
求助须知:如何正确求助?哪些是违规求助? 4568010
关于积分的说明 14312303
捐赠科研通 4493894
什么是DOI,文献DOI怎么找? 2461964
邀请新用户注册赠送积分活动 1450972
关于科研通互助平台的介绍 1426184