Evaluation of late gadolinium enhancement cardiac MRI using deep learning reconstruction

医学 图像质量 磁共振成像 对比噪声比 核医学 信噪比(成像) 图像噪声 降噪 放射科 人工智能 图像(数学) 计算机科学 电信
作者
Jing Yang,Feng Wang,Zhirong Wang,Wei Zhang,Lizhi Xie,Lixin Wang
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (10): 2714-2721
标识
DOI:10.1177/02841851231192786
摘要

Deep learning (DL)-based methods have been used to improve the imaging quality of magnetic resonance imaging (MRI) by denoising.To assess the effects of DL-based MR reconstruction (DLR) method on late gadolinium enhancement (LGE) image quality.A total of 85 patients who underwent cardiovascular magnetic resonance (CMR) examination, including LGE imaging using conventional construction and DLR with varying levels of noise reduction (NR) levels, were included. Both magnitude LGE (MLGE) and phase-sensitive LGE (PSLGE) images were reviewed independently by double-blinded observers who used a 5-point Likert scale for multiple measures regarding image quality. Meanwhile, the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and edge sharpness of images were calculated and compared between conventional LGE imaging and DLR LGE imaging.Both MLGE and PSLGE with DLR at 50% and 75% noise reduction levels received significantly higher scores than conventional imaging for overall imaging quality (all P < 0.01). In addition, the SNR, CNR, and edge sharpness of all DLR LGE imaging are higher than conventional imaging (all P < 0.01). The highest subjective score and best image quality is obtained when the DLR noise reduction level is at 75%.DLR reduced image noise while improving image contrast and sharpness in the cardiovascular LGE imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦恩完成签到,获得积分10
1秒前
Hastur00发布了新的文献求助10
2秒前
2秒前
Dr_Zhang发布了新的文献求助10
2秒前
3秒前
搞怪的怜南完成签到,获得积分10
3秒前
独云应助xiaojinzi采纳,获得10
3秒前
4秒前
4秒前
标致的书竹完成签到,获得积分10
4秒前
孤烟发布了新的文献求助10
6秒前
nn完成签到,获得积分10
6秒前
成就问寒完成签到,获得积分10
6秒前
小田心发布了新的文献求助10
6秒前
海的呼唤完成签到,获得积分10
6秒前
7秒前
脑洞疼应助独特的易形采纳,获得10
8秒前
小二郎应助哈哈哈哈111采纳,获得10
8秒前
JamesPei应助lanlan采纳,获得10
8秒前
李爱国应助标致的书竹采纳,获得10
8秒前
8秒前
8秒前
良辰应助一缕清风采纳,获得10
9秒前
研友_LMrkzn完成签到,获得积分10
10秒前
孤烟完成签到,获得积分10
10秒前
见见发布了新的文献求助10
10秒前
247793325完成签到,获得积分10
11秒前
胡胡发布了新的文献求助10
11秒前
11秒前
hani发布了新的文献求助10
11秒前
123完成签到,获得积分10
13秒前
13秒前
清茗发布了新的文献求助10
13秒前
澈哩完成签到,获得积分10
14秒前
DAGeee应助lemon采纳,获得30
15秒前
123发布了新的文献求助10
15秒前
man关闭了man文献求助
15秒前
15秒前
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308961
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508381
捐赠科研通 2617401
什么是DOI,文献DOI怎么找? 1430069
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649234