材料科学
钙钛矿(结构)
串联
光电子学
硅
能量转换效率
钙钛矿太阳能电池
带隙
太阳能电池
纳米技术
化学工程
复合材料
工程类
作者
Zhou Liu,Hongjiang Li,Zijing Chu,Rui Xia,Jin Wen,Yi Mo,Hesheng Zhu,Haowen Luo,Xuntian Zheng,Zilong Huang,Xin Luo,Bo Wang,Xueling Zhang,Guangtao Yang,Zhiqiang Feng,Yifeng Chen,Wenchi Kong,Jifan Gao,Hairen Tan
标识
DOI:10.1002/adma.202308370
摘要
Abstract Wide‐bandgap (WBG) perovskite solar cells hold tremendous potential for realizing efficient tandem solar cells. However, nonradiative recombination and carrier transport losses occurring at the perovskite/electron‐selective contact (e.g. C 60 ) interface present significant obstacles in approaching their theoretical efficiency limit. To address this, a sequential interface engineering (SIE) strategy that involves the deposition of ethylenediamine diiodide (EDAI 2 ) followed by sequential deposition of 4‐Fluoro‐Phenethylammonium chloride (4F‐PEACl) is implemented. The SIE technique synergistically narrows the conduction band offset and reduces recombination velocity at the perovskite/C 60 interface. The best‐performing WBG perovskite solar cell (1.67 eV) delivers a power conversion efficiency (PCE) of 21.8% and an impressive open‐circuit voltage of 1.262 V. Moreover, through integration with double‐textured silicon featuring submicrometer pyramid structures, a stabilized PCE of 29.6% is attained for a 1 cm 2 monolithic perovskite/silicon tandem cell (certified PCE of 29.0%).
科研通智能强力驱动
Strongly Powered by AbleSci AI