Multidimensional health heterogeneity of Chinese older adults and its determinants

潜在类模型 老年学 日常生活活动 婚姻状况 人口 多项式logistic回归 生活质量(医疗保健) 心理学 住所 医学 人口学 环境卫生 精神科 统计 数学 机器学习 社会学 计算机科学 心理治疗师
作者
Huang Yi,Zhenyu Wang,Liqun Wu
出处
期刊:SSM-Population Health [Elsevier]
卷期号:24: 101547-101547
标识
DOI:10.1016/j.ssmph.2023.101547
摘要

Nowadays, the "Healthy China" and "Actively Addressing Population Aging" are two important national strategies in China. Promoting high-quality development of demand-driven older adults health services is an important way to achieve these strategies. From the perspective of active ageing, assessing the health status of older adults from multiple dimensions becomes crucial as it helps identify their specific health service needs, intervention measures, and health policies tailored to this population.Data were derived from the China Health and Retirement Longitudinal Study (CHARLS) wave 4 (2018). A total of 4190 older adults (aged ≥60 years) were included as the analysis sample. Latent class analysis was performed to categorize older adults based on 6 health indicators, including Activities of Daily Living (ADLs), Instrumental Activities of Daily Living (IADLs), doctor diagnosed chronic diseases, depressive symptoms, cognitive function, and social participation. Multinomial logistic model was used to explore determinants associated with the various patterns of multidimensional health of older adults.The multidimensional health of older people was classified into three latent classes: Relatively Healthy (Class 1, n = 2806, 66.97%), Highly Depressed and Relatively Health Risk (Class 2, n = 1189, 28.38%), and Functional Impairment (Class 3, n = 195, 4.65%). Gender, age, education, marital status, number of children, alcohol consumption, physical activity, savings, residence, air quality satisfaction, and medical service satisfaction had significant effects on the attribution of all multidimensional health latent classes.Heterogeneous and multidimensional health classes exist in China's older population, and these classes are influenced by a variety of factors and to varying degrees. Policymakers and healthcare providers can use these evidence to further address the diverse needs of older adults and improve older-care health services, ultimately achieving the goal of Active Ageing and Healthy China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林林完成签到,获得积分10
刚刚
张青见完成签到,获得积分10
刚刚
剑影完成签到,获得积分10
刚刚
YJY完成签到,获得积分10
刚刚
qq完成签到 ,获得积分10
1秒前
pineapple完成签到,获得积分10
1秒前
xiaoluoluo完成签到,获得积分10
2秒前
OK佛完成签到 ,获得积分10
2秒前
why完成签到,获得积分10
2秒前
burninhell完成签到,获得积分10
3秒前
Faker完成签到 ,获得积分10
3秒前
科研通AI2S应助无辜梨愁采纳,获得30
4秒前
海边听海完成签到 ,获得积分10
5秒前
h w wang发布了新的文献求助10
5秒前
钦影完成签到 ,获得积分10
6秒前
称心小兔子完成签到,获得积分10
6秒前
Yolo完成签到,获得积分10
6秒前
鹿丫丫完成签到,获得积分20
7秒前
laihama完成签到,获得积分10
8秒前
写给流浪完成签到,获得积分10
8秒前
大胆的颜演完成签到,获得积分10
9秒前
赘婿应助小王同学采纳,获得10
9秒前
10秒前
lixy完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
开飞机的小羊完成签到,获得积分20
14秒前
shy完成签到,获得积分10
14秒前
自知发布了新的文献求助10
14秒前
哔哔鱼完成签到,获得积分10
14秒前
会飞的猪完成签到,获得积分10
14秒前
调研昵称发布了新的文献求助30
15秒前
16秒前
16秒前
yuxin完成签到 ,获得积分10
17秒前
Ann完成签到,获得积分10
17秒前
韦雪莲完成签到 ,获得积分10
18秒前
明理小凝完成签到 ,获得积分10
18秒前
Yi发布了新的文献求助100
19秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793801
关于积分的说明 7807889
捐赠科研通 2450113
什么是DOI,文献DOI怎么找? 1303653
科研通“疑难数据库(出版商)”最低求助积分说明 627017
版权声明 601350