计算机科学
解算器
康复
过程(计算)
机器人
培训(气象学)
多样性(政治)
人机交互
人工智能
物理疗法
医学
操作系统
物理
社会学
气象学
人类学
程序设计语言
作者
Yuting Fan,Lifeng Zhu,Hui Wang,Aiguo Song
出处
期刊:IEEE Transactions on Visualization and Computer Graphics
[Institute of Electrical and Electronics Engineers]
日期:2023-08-28
卷期号:: 1-13
标识
DOI:10.1109/tvcg.2023.3308940
摘要
For upper limb rehabilitation, the robot-assisted technique in combination with serious games requires well-specified training plans. For the best quality of the rehabilitation process, customized game levels for each user are desired, while it is labor-intensive to design and adjust game levels for different individuals. We work on generating training content for a desktop end-effector rehabilitation robot and propose a method to automatically generate individualized training plans. By modeling the search of the training motions as finding optimal hand paths and trajectories, we introduce solving the design problem with a multi-objective optimization (MO) solver. We further improve the MO solver to enhance the diversity of the solutions. With the proposed approach, our system is capable of automatically generating various training plans considering the training intensity and dexterity of each joint in the upper limb. In addition, the enhanced diversity avoids repeated training plans, which helps motivate the user in the rehabilitation. We test our method with different requirements on the training plans and validate the solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI