材料科学
马氏体
奥氏体
硬化(计算)
冶金
合金
固溶强化
微观结构
点焊
沉淀硬化
复合材料
焊接
图层(电子)
作者
Nima Nadimi,Mohammad Pouranvari,Reza Ansari,M. Pouranvari
标识
DOI:10.1016/j.jmrt.2023.08.251
摘要
The fusion zone (FZ) hardness of resistance spot welds is a crucial factor affecting the performance and durability of the welds. Failure mode transition, tendency to fail in interfacial mode, interfacial failure load, and the impact of liquid metal embrittlement cracks on the weld strength are influenced by the FZ hardness. Therefore, accurately predicting the FZ hardness in resistance spot welds made on automotive steels is essential. A simple thermal model is used to calculate the time required for the temperature to drop from 800 °C to 500 °C (Δt85). With the aid of continuous cooling transformation (CCT) diagrams and experimental confirmation, it is shown that in most automotive steels, the FZ exhibits an almost full martensitic microstructure. Generally, the FZ hardness tends to increase in the order of interstitial-free (IF), drawing quality special killed (DQSK), high strength low alloy (HSLA), ferrite-martensite dual-phase steels, transformation induced plasticity (TRIP), and quench & partitioning (Q&P) steels. To predict the FZ hardness, data-driven regression-based models have been developed based on carbon content, carbon equivalent concept, and the strengthening mechanisms of the martensite. Among these models, the model based on martensite strengthening mechanisms showed the best performance and robustness in estimating the FZ hardness. The assessment of the strengthening mechanism of the FZ showed that most important factors determining the FZ hardness are dislocation hardening due to carbon atoms, interface hardening due to block boundaries, and solid solution hardening due to substitutional alloying elements, respectively. A simple relation is proposed to estimate the load-bearing capacity of automotive steel spot welds during interfacial failure based on the FZ hardness.
科研通智能强力驱动
Strongly Powered by AbleSci AI