Predicting mixed venous oxygen saturation (SvO2) impairment in COPD patients using clinical-CT radiomics data: A preliminary study

慢性阻塞性肺病 医学 肺动脉 肺动脉高压 心脏病学 内科学 血压 逻辑回归 单变量分析 放射科 多元分析
作者
Ping An,Jun-Jie Liu,Man Yu,Jinsong Wang,Zhongqiu Wang
出处
期刊:Technology and Health Care [IOS Press]
卷期号:: 1-14 被引量:1
标识
DOI:10.3233/thc-230619
摘要

Chronic obstructive pulmonary disease (COPD) is one of the most common chronic airway diseases in the world.To predict the degree of mixed venous oxygen saturation (SvO2) impairment in patients with COPD by modeling using clinical-CT radiomics data and to provide reference for clinical decision-making.A total of 236 patients with COPD diagnosed by CT and clinical data at Xiangyang No. 1 People's Hospital (n= 157) and Xiangyang Central Hospital (n= 79) from June 2018 to September 2021 were retrospectively analyzed. The patients were divided into group A (SvO⩾2 62%, N= 107) and group B (SvO<2 62%, N= 129). We set up training set and test set at a ratio of 7/3 and time cutoff spot; In training set, Logistic regression was conducted to analyze the differences in general data (e.g. height, weight, systolic blood pressure), laboratory indicators (e.g. arterial oxygen saturation and pulmonary artery systolic pressure), and CT radiomics (radscore generated using chest CT texture parameters from 3D slicer software and LASSO regression) between these two groups. Further the risk factors screened by the above method were used to establish models for predicting the degree of hypoxia in COPD, conduct verification in test set and create a nomogram.Univariate analysis demonstrated that age, smoking history, drinking history, systemic systolic pressure, digestive symptoms, right ventricular diameter (RV), mean systolic pulmonary artery pressure (sPAP), cardiac index (CI), pulmonary vascular resistance (PVR), 6-min walking distance (6MWD), WHO functional classification of pulmonary hypertension (WHOPHFC), the ratio of forced expiratory volume in the first second to the forced vital capacity (FEV1%), and radscore in group B were all significantly different from those in group A (P< 0.05). Multivariate regression demonstrated that age, smoking history, digestive symptoms, 6MWD, and radscore were independent risk factors for SvO2 impairment. The combined model established based on the abovementioned indicators exhibited a good prediction effect [AUC: 0.903; 95%CI (0.858-0.937)], higher than the general clinical model [AUC: 0.760; 95%CI (0.701-0.813), P< 0.05] and laboratory examination-radiomics model [AUC: 0.868; 95%CI (0.818-0.908), P= 0.012]. The newly created nomogram may be helpful for clinical decision-making and benefit COPD patients.SvO2 is an important indicator of hypoxia in COPD, and it is highly related to age, 6MWD, and radscore. The combined model is helpful for early identification of SvO2 impairment and adjustment of COPD treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
胖Q完成签到 ,获得积分20
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
liciky完成签到 ,获得积分10
4秒前
潘健康发布了新的文献求助10
4秒前
复杂的乐蕊完成签到,获得积分10
4秒前
Dave发布了新的文献求助10
4秒前
林一发布了新的文献求助10
6秒前
今后应助积极的老鼠采纳,获得10
6秒前
彭于晏应助yuhan采纳,获得10
6秒前
sin3xas4sin3x完成签到,获得积分10
7秒前
8秒前
上官若男应助Rosemary采纳,获得10
8秒前
Lim1819完成签到 ,获得积分10
9秒前
脑洞疼应助小胡爱科研采纳,获得10
9秒前
lin发布了新的文献求助20
10秒前
10秒前
13秒前
13秒前
Hibiscus95发布了新的文献求助10
15秒前
15秒前
zy177发布了新的文献求助10
16秒前
16秒前
AN应助小明采纳,获得10
17秒前
Elan完成签到 ,获得积分10
18秒前
xxxx发布了新的文献求助30
18秒前
77发布了新的文献求助10
20秒前
yuhan发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
林一完成签到,获得积分10
23秒前
酷波er应助zy177采纳,获得10
23秒前
23秒前
彭于晏应助陈惠123采纳,获得10
24秒前
leiwenyulan发布了新的文献求助10
25秒前
monica完成签到 ,获得积分10
25秒前
香蕉觅云应助lshl2000采纳,获得10
25秒前
完美世界应助没想到羽毛采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879