无人机
强化学习
计算机科学
水准点(测量)
标杆管理
布线(电子设计自动化)
分布式计算
模块化设计
人工智能
嵌入式系统
程序设计语言
遗传学
大地测量学
营销
业务
生物
地理
作者
Shiyao Ding,Hideki Aoyama,Donghui Lin
标识
DOI:10.1007/978-981-99-7025-4_40
摘要
The use of drones as an efficient delivery solution is a promising technology, addressing the growing demand for deliveries. Unlike the traditional vehicle routing problem (VRP), we introduce a new drone routing problem (DRP) that considers distinct drone delivery attributes, especially the need for dynamic, collision-free routes in non-grid settings. To optimize team rewards in DRP, cooperative efforts of all drones are essential. Thus, we employ cooperative multi-agent reinforcement learning (MARL). We present MARL $$_{4}DRP$$ , a comprehensive benchmark tailored for applying cooperative MARL to DRP. Our contributes to the optimization of drone delivery using MARL, offering a solid foundation for future research in this domain. All code is available at the repository: https://github.com/DING-1994/MARL4DRP
科研通智能强力驱动
Strongly Powered by AbleSci AI