EU-Net: Automatic U-Net neural architecture search with differential evolutionary algorithm for medical image segmentation

计算机科学 算法 人工智能 分割 人工神经网络 数据挖掘 进化算法 块(置换群论) 网(多面体) 渡线 模式识别(心理学) 数学 几何学
作者
Caiyang Yu,Yixi Wang,Chenwei Tang,Wentao Feng,Jiancheng Lv
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107579-107579 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107579
摘要

Medical images are crucial in clinical practice, providing essential information for patient assessment and treatment planning. However, manual extraction of information from images is both time-consuming and prone to errors. The emergence of U-Net addresses this challenge by automating the segmentation of anatomical structures and pathological lesions in medical images, thereby significantly enhancing the accuracy of image interpretation and diagnosis. However, the performance of U-Net largely depends on its encoder–decoder structure, which requires researchers with knowledge of neural network architecture design and an in-depth understanding of medical images. In this paper, we propose an automatic U-Net Neural Architecture Search (NAS) algorithm using the differential evolutionary (DE) algorithm, named EU-Net, to segment critical information in medical images to assist physicians in diagnosis. Specifically, by presenting the variable-length strategy, the proposed EU-Net algorithm can sufficiently and automatically search for the neural network architecture without expertise. Moreover, the utilization of crossover, mutation, and selection strategies of DE takes account of the trade-off between exploration and exploitation in the search space. Finally, in the encoding and decoding phases of the proposed algorithm, different block-based and layer-based structures are introduced for architectural optimization. The proposed EU-Net algorithm is validated on two widely used medical datasets, i.e., CHAOS and BUSI, for image segmentation tasks. Extensive experimental results show that the proposed EU-Net algorithm outperforms the chosen peer competitors in both two datasets. In particular, compared to the original U-Net, our proposed method improves the metric mIou by at least 6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜梨愁完成签到 ,获得积分10
刚刚
1秒前
在水一方应助旺旺老师采纳,获得10
1秒前
1秒前
华仔应助hehe采纳,获得10
1秒前
2秒前
爱撒娇的冷亦完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
胡豆发布了新的文献求助10
3秒前
snow完成签到,获得积分10
3秒前
3秒前
antonia1031应助浮浮采纳,获得10
4秒前
情怀应助冯大哥采纳,获得10
5秒前
文茵完成签到,获得积分10
5秒前
羊村第一巴图鲁完成签到,获得积分10
6秒前
6秒前
HZZ发布了新的文献求助10
6秒前
6秒前
7秒前
ry完成签到,获得积分10
7秒前
ekdjk完成签到,获得积分10
7秒前
7秒前
7秒前
ania发布了新的文献求助10
7秒前
snow发布了新的文献求助10
8秒前
Hsevencc完成签到 ,获得积分10
8秒前
俭朴夜雪发布了新的文献求助10
8秒前
爆米花应助vulgar采纳,获得10
9秒前
9秒前
赘婿应助活力尔竹采纳,获得10
10秒前
胡豆完成签到,获得积分10
10秒前
10秒前
ekdjk发布了新的文献求助10
11秒前
朴素千亦发布了新的文献求助10
11秒前
11秒前
Franky完成签到,获得积分10
11秒前
小刺猬发布了新的文献求助10
12秒前
Hermoine发布了新的文献求助10
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3226832
求助须知:如何正确求助?哪些是违规求助? 2875060
关于积分的说明 8189063
捐赠科研通 2542120
什么是DOI,文献DOI怎么找? 1372548
科研通“疑难数据库(出版商)”最低求助积分说明 646537
邀请新用户注册赠送积分活动 620887