EU-Net: Automatic U-Net neural architecture search with differential evolutionary algorithm for medical image segmentation

计算机科学 算法 人工智能 分割 人工神经网络 数据挖掘 进化算法 块(置换群论) 网(多面体) 渡线 模式识别(心理学) 数学 几何学
作者
Caiyang Yu,Yixi Wang,Chenwei Tang,Wentao Feng,Jiancheng Lv
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107579-107579 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107579
摘要

Medical images are crucial in clinical practice, providing essential information for patient assessment and treatment planning. However, manual extraction of information from images is both time-consuming and prone to errors. The emergence of U-Net addresses this challenge by automating the segmentation of anatomical structures and pathological lesions in medical images, thereby significantly enhancing the accuracy of image interpretation and diagnosis. However, the performance of U-Net largely depends on its encoder–decoder structure, which requires researchers with knowledge of neural network architecture design and an in-depth understanding of medical images. In this paper, we propose an automatic U-Net Neural Architecture Search (NAS) algorithm using the differential evolutionary (DE) algorithm, named EU-Net, to segment critical information in medical images to assist physicians in diagnosis. Specifically, by presenting the variable-length strategy, the proposed EU-Net algorithm can sufficiently and automatically search for the neural network architecture without expertise. Moreover, the utilization of crossover, mutation, and selection strategies of DE takes account of the trade-off between exploration and exploitation in the search space. Finally, in the encoding and decoding phases of the proposed algorithm, different block-based and layer-based structures are introduced for architectural optimization. The proposed EU-Net algorithm is validated on two widely used medical datasets, i.e., CHAOS and BUSI, for image segmentation tasks. Extensive experimental results show that the proposed EU-Net algorithm outperforms the chosen peer competitors in both two datasets. In particular, compared to the original U-Net, our proposed method improves the metric mIou by at least 6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
威武爆米花完成签到,获得积分10
2秒前
在水一方应助zhaowenxian采纳,获得10
3秒前
SS给SS的求助进行了留言
3秒前
4秒前
6秒前
Linden_bd完成签到 ,获得积分10
6秒前
科研通AI5应助yangyangyang采纳,获得10
6秒前
6秒前
漠北完成签到,获得积分10
6秒前
6秒前
Isabel完成签到 ,获得积分10
7秒前
起风了完成签到,获得积分10
7秒前
8秒前
Zjn-完成签到,获得积分10
8秒前
良辰应助lost采纳,获得10
8秒前
靓丽梦桃完成签到,获得积分20
9秒前
9秒前
0306完成签到,获得积分10
9秒前
李创业完成签到,获得积分10
9秒前
庆次完成签到 ,获得积分10
10秒前
ZY发布了新的文献求助10
10秒前
36456657应助跳跃的罡采纳,获得10
10秒前
36456657应助跳跃的罡采纳,获得10
10秒前
pluto应助跳跃的罡采纳,获得10
10秒前
丘比特应助跳跃的罡采纳,获得10
10秒前
10秒前
左手树完成签到,获得积分10
11秒前
11秒前
踏实的似狮完成签到,获得积分10
11秒前
正直画笔完成签到 ,获得积分10
11秒前
草履虫完成签到 ,获得积分10
12秒前
靓丽梦桃发布了新的文献求助10
12秒前
李创业发布了新的文献求助10
13秒前
炙热冰夏发布了新的文献求助10
13秒前
autobot1完成签到,获得积分10
13秒前
科研通AI5应助111采纳,获得10
13秒前
烟花应助Wang采纳,获得10
13秒前
曼尼发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762