How useful is genomic data for predicting maladaptation to future climate?

适应不良 气候变化 偏移量(计算机科学) 人口 生态学 地理 计算机科学 生物 人口学 社会学 遗传学 程序设计语言
作者
Brandon M. Lind,Rafael Candido‐Ribeiro,Pooja Singh,Mengmeng Lu,Dragana Obreht Vidaković,Tom R. Booker,Michael C. Whitlock,Sam Yeaman,Nathalie Isabel,Sally N. Aitken
出处
期刊:Global Change Biology [Wiley]
卷期号:30 (4) 被引量:20
标识
DOI:10.1111/gcb.17227
摘要

Abstract Methods using genomic information to forecast potential population maladaptation to climate change or new environments are becoming increasingly common, yet the lack of model validation poses serious hurdles toward their incorporation into management and policy. Here, we compare the validation of maladaptation estimates derived from two methods—Gradient Forests (GF offset ) and the risk of non‐adaptedness (RONA)—using exome capture pool‐seq data from 35 to 39 populations across three conifer taxa: two Douglas‐fir varieties and jack pine. We evaluate sensitivity of these algorithms to the source of input loci (markers selected from genotype–environment associations [GEA] or those selected at random). We validate these methods against 2‐ and 52‐year growth and mortality measured in independent transplant experiments. Overall, we find that both methods often better predict transplant performance than climatic or geographic distances. We also find that GF offset and RONA models are surprisingly not improved using GEA candidates. Even with promising validation results, variation in model projections to future climates makes it difficult to identify the most maladapted populations using either method. Our work advances understanding of the sensitivity and applicability of these approaches, and we discuss recommendations for their future use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助无私啤酒采纳,获得10
1秒前
烟花应助梁子奥里给采纳,获得10
2秒前
a470946389完成签到,获得积分10
3秒前
冷傲芷雪完成签到 ,获得积分10
3秒前
古茗会完成签到 ,获得积分10
4秒前
5秒前
5秒前
油菜籽完成签到 ,获得积分10
5秒前
NanNan626发布了新的文献求助80
5秒前
8秒前
拖拖完成签到 ,获得积分10
8秒前
13秒前
蔡夜安发布了新的文献求助10
13秒前
英姑应助天真的香寒采纳,获得10
13秒前
小俞发布了新的文献求助10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
良辰应助科研通管家采纳,获得10
15秒前
zanilia应助科研通管家采纳,获得20
16秒前
wanci应助科研通管家采纳,获得10
16秒前
敏敏应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
8R60d8应助lzy采纳,获得10
16秒前
xiaofei666应助科研通管家采纳,获得100
16秒前
cocolu应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
17秒前
zanilia应助科研通管家采纳,获得10
17秒前
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
17秒前
容言发布了新的文献求助10
18秒前
饱满的土豆完成签到,获得积分10
18秒前
19秒前
大旭完成签到 ,获得积分10
19秒前
迷路的松完成签到,获得积分10
20秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313983
求助须知:如何正确求助?哪些是违规求助? 2946364
关于积分的说明 8529773
捐赠科研通 2622015
什么是DOI,文献DOI怎么找? 1434286
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774