扫描隧道显微镜
之字形的
硼酚
石墨烯纳米带
硼
密度泛函理论
钝化
扫描隧道光谱
材料科学
从头算量子化学方法
化学物理
偶极子
纳米技术
从头算
结晶学
石墨烯
凝聚态物理
化学
图层(电子)
计算化学
物理
分子
几何学
数学
有机化学
作者
Haochen Wang,Pengcheng Ding,Guang‐Jie Xia,Xiangyun Zhao,E Wenlong,Miao Yu,Zhibo Ma,Yang‐Gang Wang,Lai‐Sheng Wang,Jun Li,Xueming Yang
标识
DOI:10.1002/anie.202406535
摘要
Borophenes have sparked considerable interest owing to their fascinating physical characteristics and diverse polymorphism. However, borophene nanoribbons (BNRs) with widths less than 2 nm have not been achieved. Herein, we report the experimental realization of supernarrow BNRs. Combining scanning tunneling microscopy imaging with density functional theory modeling and ab initio molecular dynamics simulations, we demonstrate that, under the applied growth conditions, boron atoms can penetrate the outermost layer of Au(111) and form BNRs composed of a pair of zigzag (2,2) boron rows. The BNRs have a width self‐contained to ∼1 nm and dipoles at the edges to keep them separated. They are embedded in the outermost Au layer and shielded on top by the evacuated Au atoms, free of the need for post‐passivation. Scanning tunneling spectroscopy reveals distinct edge states, primarily attributed to the localized spin at the BNRs’ zigzag edges. This work adds a new member to the boron material family and introduces a new physical feature to borophenes.
科研通智能强力驱动
Strongly Powered by AbleSci AI