Impact of lighting environment on human performance and prediction modeling of personal visual comfort in enclosed cabins

亮度 计算机科学 模拟 认知 人造光 建筑工程 工程类 心理学 计算机视觉 照度 天文 物理 神经科学
作者
Mengya Zhu,Xian Zhang,Dengkai Chen,Yong Gong
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:927: 171970-171970 被引量:2
标识
DOI:10.1016/j.scitotenv.2024.171970
摘要

Enclosed cabins are of great significance in various fields, including national defense, scientific research, and industrial applications. It is important to clarify the impact of the lighting environment in these cabins on the people operating within them. This study investigated the effects of the lighting environment in enclosed cabins on the physiological, operational, and comfort performance of operators through simulated experiments. In Addition, using the Random Forest Algorithm and ExpandNet technique, we developed a prediction model to evaluate the comfort level of the lighting environment for personnel in enclosed cabins. The results indicated that pupil diameter exhibited the highest sensitivity to ambient light. The appropriate luminance combination of the screen and the ambient scene have a positive effect on human performance. In particular, it was observed that the average cognitive performance and comfort of participants tended to be relatively high in the luminance combinations 13, 14, and 15 at CCT 5500 K. The screen luminance of these combinations are all 284.75 cd/m2. Although no statistically significant relationship was found between the cognitive performance of the participants and their comfort, the comfort of the participants tended to decrease after the cognitive operations was completed. According to the proposed personal comfort prediction model, the visual comfort of different people varies even under the same lighting conditions. This study provides a solid theoretical basis for improving the design of lighting environments in enclosed spaces and contributes to developing a pleasant and productive working environment within limited cabins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘星星发布了新的文献求助10
1秒前
寻道图强应助啦啦啦啦啦采纳,获得30
1秒前
华仔应助叮咚铛采纳,获得10
2秒前
黑章鱼保罗完成签到,获得积分10
3秒前
渣渣慧发布了新的文献求助20
5秒前
雨木目完成签到,获得积分10
6秒前
Liu发布了新的文献求助10
6秒前
6秒前
9秒前
wen应助开心颜采纳,获得10
10秒前
11秒前
maliang666完成签到,获得积分10
13秒前
大模型应助南滨采纳,获得10
14秒前
外向沅发布了新的文献求助10
15秒前
司徒迎曼发布了新的文献求助10
16秒前
普普完成签到,获得积分10
16秒前
爱吃蜜桃的猴子完成签到,获得积分10
16秒前
LUO发布了新的文献求助10
19秒前
20秒前
yuhui发布了新的文献求助30
23秒前
23秒前
背后的钢铁侠完成签到,获得积分10
24秒前
优雅烨伟完成签到,获得积分10
25秒前
斯文败类应助honey采纳,获得10
26秒前
微光发布了新的文献求助10
26秒前
fer发布了新的文献求助10
27秒前
27秒前
lululemon完成签到 ,获得积分10
28秒前
李健应助外向沅采纳,获得10
28秒前
卡卡完成签到,获得积分10
28秒前
CipherSage应助xh采纳,获得10
29秒前
30秒前
31秒前
叮咚铛发布了新的文献求助10
31秒前
司徒迎曼完成签到,获得积分10
32秒前
32秒前
英俊的铭应助hnututu采纳,获得50
32秒前
Akim应助hnututu采纳,获得50
32秒前
情怀应助hnututu采纳,获得50
33秒前
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315844
求助须知:如何正确求助?哪些是违规求助? 2947564
关于积分的说明 8537553
捐赠科研通 2623671
什么是DOI,文献DOI怎么找? 1435373
科研通“疑难数据库(出版商)”最低求助积分说明 665558
邀请新用户注册赠送积分活动 651410