化学
烯烃纤维
选择性
磺酸盐
吸附
化学工程
分子
丁烯
多孔性
有机化学
乙烯
聚合物
催化作用
钠
工程类
作者
Zhensong Qiu,Jiyu Cui,Lifeng Yang,Zhaoqiang Zhang,Xian Suo,Xili Cui,Huabin Xing
摘要
Selective recognition of 1,3-butadiene from complex olefin isomers is vital for 1,3-butadiene purification, but the lack of porous materials with suitable pore structures results in poor selectivity and low capacity in C4 olefin separation. Herein, two sulfonate-functionalized organic frameworks, ZU-601 and ZU-602, are designed and show impressive separation performance toward C4 olefins. Benefiting from the suitable aperture size caused by the flexibility of coordinated organic ligand, ZU-601, ZU-602 that are pillared with different sulfonate anions could discriminate C4 olefin isomers with high uptake ratio: 1,3-butadiene/1-butene (207), 1,3-butadiene/trans-2-butene (10.1). Meanwhile, their layer-stacked structure enables the utilization of both intra- and interlayer space, enhancing the accommodation of guest molecules. ZU-601 exhibits record high 1,3-butadiene adsorption capacity of 2.90 mmol g-1 (0.5 bar, 298 K) among the reported flexible porous materials with high 1,3-butadiene/1-butene selectivity. The breakthrough experiments confirm their superior separation ability even for all five C4 olefin isomers, and the molecular-level structural change is well elucidated via powder, crystal analysis, and simulation studies. The work provides ideas toward advanced materials design with simultaneous high separation capacity and high separation selectivity for challenging separations.
科研通智能强力驱动
Strongly Powered by AbleSci AI