In situ covalent crosslinking strategy to construct highly stable composite separators for lithium-ion batteries

共价键 原位 复合数 锂(药物) 离子 构造(python库) 材料科学 化学工程 高分子化学 化学 复合材料 有机化学 计算机科学 工程类 医学 程序设计语言 内分泌学
作者
Hezhe Zhu,Bowei Dong,Xiaochuan Cai,Liujiang Xi,Peisheng Zhang,Yuanqiang Hao,Shu Chen,Rongjin Zeng
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:488: 151120-151120 被引量:2
标识
DOI:10.1016/j.cej.2024.151120
摘要

The separator is a crucial component in lithium-ion batteries, significantly impacting their performance, cycle life, and safety. This study presents a novel approach for constructing high-performance ceramic composite separators for lithium-ion batteries using a covalent coupling strategy. Employing glycidoxypropyltrimethoxysilane (GPTMS) as the coupling agent, the synthesized binder, poly(acrylic acid)–co-poly(tetrahydrofurfuryl acrylate) (P(AA-THFA)), is covalently linked to ceramic particles Boehmite (AlOOH). The silane establishes covalent bonds with Boehmite through siloxane linkages, while the epoxy groups of the silane react with the carboxyl groups of the binder, resulting in the formation of a covalently linked novel composite separator, PE@P(AA-THFA)/GPTMS/AlOOH. The composite separator demonstrates enhanced microstructural stability, showcasing significant improvements in thermal stability, peel strength and battery cycling performance. Thermal stability tests confirm its resistance to shrinkage even at 180 °C, underscoring the critical role of covalent coupling in separator stability. Peel strength tests indicate increased adhesion of the coating slurry, contributing to structural integrity. Moreover, the composite separator exhibits excellent wetting behavior with the electrolyte, leading to heightened ion conductivity. Measurements of lithium ion transference numbers highlight improved lithium ion movement within the composite separators. Battery performance tests, encompassing cyclic stability and rate capability, underscore the superiority of covalently coupled composite separators, especially under high-current–density conditions. This approach presents a promising method for fabricating lithium-ion battery separators with enhanced reliability and safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊猫盖浇饭完成签到,获得积分10
刚刚
刚刚
dlCao发布了新的文献求助10
刚刚
纯真的雨完成签到 ,获得积分10
1秒前
李健应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
Yuki应助科研通管家采纳,获得20
1秒前
打打应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
上官若男应助无与伦比采纳,获得100
2秒前
隐形曼青应助小豪号采纳,获得10
3秒前
顺利洋葱完成签到,获得积分10
4秒前
6秒前
在路上完成签到,获得积分10
7秒前
10秒前
12秒前
12秒前
13秒前
zzx396发布了新的文献求助10
14秒前
14秒前
15秒前
还是做不出来么完成签到,获得积分10
16秒前
zhaoxiaonuan完成签到,获得积分10
16秒前
17秒前
熊仔胖嘟嘟完成签到,获得积分10
17秒前
包容丹云完成签到,获得积分10
18秒前
俭朴的大有完成签到,获得积分10
19秒前
Amorino完成签到,获得积分10
19秒前
CFF发布了新的文献求助10
19秒前
小豪号发布了新的文献求助10
20秒前
我是老大应助一颗大树采纳,获得10
20秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2998307
求助须知:如何正确求助?哪些是违规求助? 2658831
关于积分的说明 7198014
捐赠科研通 2294352
什么是DOI,文献DOI怎么找? 1216620
科研通“疑难数据库(出版商)”最低求助积分说明 593560
版权声明 592904