神经发生
维甲酸
Notch信号通路
SOX2
细胞生物学
神经科学
槽口1
生物
化学
遗传学
信号转导
转录因子
基因
作者
Christina N. Como,Rebecca O’Rourke,Caitlin C. Winkler,Danae Mitchell,Luuli N. Tran,David S. Lorberbaum,Lori Sussel,Santos J. Franco,Julie A. Siegenthaler
标识
DOI:10.1101/2024.04.05.588348
摘要
Summary The meninges act as a regulator of brain development by secreting ligands that act on neural cells to regulate neurogenesis and neuronal migration. Meningeal-derived retinoic acid (RA) promotes neocortical neural progenitor cell cycle exit; however, the underlying molecular mechanism is unknown. Here, we used spatial transcriptomics and profiling of retinoic-acid receptor-α (RARα) DNA binding in Foxc1 -mutant embryos that lack meninges-derived ligands to identify the neurogenic transcriptional mechanisms of RA signaling in telencephalic neural progenitors. We determined that meningeal-derived RA controls neurogenesis by suppressing progenitor self-renewal pathways Notch signaling and the transcription factor Sox2. We show that RARα binds in the Sox2ot promoter, a long non-coding RNA that regulates Sox2 expression, and RA promotes Sox2ot expression in neocortical progenitors. Our findings elucidate a previously unknown mechanism of how meningeal RA coordinates neocortical development and insight into how defects in meningeal development may cause neurodevelopmental disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI