Charge Trapping in Semiconductor Photocatalysts: A Time- and Space-Domain Perspective

化学 俘获 半导体 载流子 光催化 空间电荷 电荷(物理) 飞秒 超快激光光谱学 化学物理 纳米技术 光电子学 光谱学 工程物理 量子力学 光学 物理 材料科学 生态学 激光器 生物 电子 生物化学 催化作用
作者
Jiawei Xue,Mamoru Fujitsuka,Takashi Tachikawa,Jun Bao,Tetsuro Majima
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (13): 8787-8799 被引量:10
标识
DOI:10.1021/jacs.3c14757
摘要

Harnessing solar energy to produce value-added fuels and chemicals through photocatalysis techniques holds promise for establishing a sustainable and environmentally friendly energy economy. The intricate dynamics of photogenerated charge carriers lies at the core of the photocatalysis. The balance between charge trapping and band-edge recombination has a crucial influence on the activity of semiconductor photocatalysts. Consequently, the regulation of traps in photocatalysts becomes the key to optimizing their activities. Nevertheless, our comprehension of charge trapping, compared to that of well-studied charge recombination, remains somewhat limited. This limitation stems from the inherently heterogeneous nature of traps at both temporal and spatial scales, which renders the characterization of charge trapping a formidable challenge. Fortunately, recent advancements in both time-resolved spectroscopy and space-resolved microscopy have paved the way for considerable progress in the investigation and manipulation of charge trapping. In this Perspective, we focus on charge trapping in photocatalysts with the aim of establishing a direct link to their photocatalytic activities. To achieve this, we begin by elucidating the principles of advanced time-resolved spectroscopic techniques such as femtosecond time-resolved transient absorption spectroscopy and space-resolved microscopic methods, such as single-molecule fluorescence microscopy and surface photovoltage microscopy. Additionally, we provide an overview of noteworthy research endeavors dedicated to probing charge trapping using time- and space-resolved techniques. Our attention is then directed toward recent achievements in the manipulation of charge trapping in photocatalysts through defect engineering. Finally, we summarize this Perspective and discuss the future challenges and opportunities that lie ahead in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美元枫完成签到,获得积分10
刚刚
1秒前
赵胜男完成签到 ,获得积分10
1秒前
2秒前
共享精神应助坚强的樱采纳,获得10
2秒前
3秒前
千陽完成签到,获得积分10
3秒前
bluesiryao完成签到,获得积分10
3秒前
Miracle完成签到,获得积分10
3秒前
托丽莲睡拿完成签到,获得积分10
3秒前
3秒前
3秒前
DAYTOY发布了新的文献求助50
4秒前
杀出个黎明举报求助违规成功
4秒前
whatever举报求助违规成功
4秒前
iNk举报求助违规成功
4秒前
4秒前
linxue完成签到,获得积分10
4秒前
蛋蛋1完成签到,获得积分10
5秒前
5秒前
6秒前
ss发布了新的文献求助10
6秒前
SHJ完成签到,获得积分20
6秒前
海棠听风发布了新的文献求助10
7秒前
23发布了新的文献求助10
7秒前
xde145完成签到,获得积分10
7秒前
8秒前
shime完成签到,获得积分10
8秒前
费城青年发布了新的文献求助10
8秒前
8秒前
9秒前
SHDeathlock给SHDeathlock的求助进行了留言
10秒前
10秒前
10秒前
马静雨发布了新的文献求助50
11秒前
拼搏起眸发布了新的文献求助10
12秒前
二二二发布了新的文献求助10
12秒前
科目三应助柴火烧叽采纳,获得10
12秒前
啊实打实的卡完成签到,获得积分10
12秒前
orixero应助大智若愚啊采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794