A Time-Series Data-Driven Method for Milling Force Prediction of Robotic Machining

机械加工 系列(地层学) 时间序列 计算机科学 机械工程 工程类 控制工程 机器学习 古生物学 生物
作者
Kai Wu,Yuan Lu,Ruyi Huang,Bernd Kuhlenkötter,Weihua Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12
标识
DOI:10.1109/tim.2024.3376018
摘要

The machining chatter is the major factor that results in low dimensional accuracy, poor product quality, and even downtime when the industrial robots mill parts. Milling force is one of the highest responsive parameters that can depict whether machining chatter occurs and has widely been used for monitoring purposes. However, most milling force prediction methods focus on offline prediction, which cannot model and predict milling forces in real-time for complex systems with varying dynamics and poses, making it difficult to reflect the machining process of industrial robotics in time. To address the above challenge, a time series data-driven method is proposed for the milling force prediction of robotic machining, which explores two types of prediction modes based on Particle Swarm Optimization and Long Short-Term Memory Network (PSO-LSTM). The first is a sequence-to-sequence mode, called time interval prediction mode (TIP), which updates the network with actual values during deployment and can perform the next cycle prediction after one prediction step when milling starts. The second one is a point-to-sequence mode, named single-step cycle prediction mode (SCP), which updates the network with predicted values during deployment and only requires the offline optimized network model to predict milling forces at the beginning of milling. The PSO algorithm is utilized as the optimization component to determine the optimal hyperparameters for the TIP and SCP model, which is subsequently used for online prediction. Experimental validation was performed on a self-constructed robotic milling platform, and results indicate that the proposed approach performs well in predicting the milling force characteristics within the next 1 second of real-time milling.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL完成签到,获得积分10
1秒前
大大怪完成签到,获得积分10
1秒前
她的城完成签到,获得积分0
3秒前
严剑封完成签到,获得积分10
4秒前
ggdio完成签到,获得积分20
5秒前
ytrewq完成签到 ,获得积分10
8秒前
心有猛虎完成签到,获得积分10
14秒前
我爱科研完成签到 ,获得积分20
15秒前
lxlcx完成签到,获得积分10
18秒前
顾矜应助Feng5945采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Yes0419完成签到,获得积分10
19秒前
Liang完成签到,获得积分10
20秒前
ggdio关注了科研通微信公众号
25秒前
27秒前
优雅沛文完成签到 ,获得积分10
28秒前
28秒前
自信的高山完成签到,获得积分10
29秒前
hujun完成签到 ,获得积分10
29秒前
Feng5945完成签到,获得积分10
30秒前
不安毛豆发布了新的文献求助10
31秒前
小鞋完成签到,获得积分10
31秒前
Feng5945发布了新的文献求助10
34秒前
优雅小橘子完成签到 ,获得积分10
38秒前
lilaccalla完成签到 ,获得积分10
39秒前
三石完成签到,获得积分10
40秒前
mingtian完成签到,获得积分10
42秒前
达达完成签到,获得积分10
42秒前
daqing1725发布了新的文献求助10
47秒前
mojito完成签到 ,获得积分10
50秒前
研友_Z119gZ完成签到 ,获得积分10
51秒前
lezard完成签到,获得积分10
58秒前
zjzjzjzjzj完成签到 ,获得积分10
58秒前
欣喜的跳跳糖完成签到 ,获得积分10
1分钟前
jingsihan完成签到,获得积分10
1分钟前
1分钟前
直率芮完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388579
求助须知:如何正确求助?哪些是违规求助? 3000831
关于积分的说明 8793953
捐赠科研通 2687098
什么是DOI,文献DOI怎么找? 1472001
科研通“疑难数据库(出版商)”最低求助积分说明 680683
邀请新用户注册赠送积分活动 673326