A Multimodal Video-Based AI Biomarker for Aortic Stenosis Development and Progression

医学 心脏病学 内科学 狭窄 生物标志物 主动脉瓣狭窄 主动脉瓣 磁共振成像 放射科 生物化学 化学
作者
Evangelos K. Oikonomou,Gregory Holste,Neal Yuan,Andreas Coppi,Robert L. McNamara,Norrisa Haynes,Amit N. Vora,Eric J. Velazquez,Fan Li,Venu Menon,Samir Kapadia,Thomas M. Gill,Girish N. Nadkarni,Harlan M. Krumholz,Zhangyang Wang,David Ouyang,Rohan Khera
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:9 (6): 534-534 被引量:10
标识
DOI:10.1001/jamacardio.2024.0595
摘要

Importance Aortic stenosis (AS) is a major public health challenge with a growing therapeutic landscape, but current biomarkers do not inform personalized screening and follow-up. A video-based artificial intelligence (AI) biomarker (Digital AS Severity index [DASSi]) can detect severe AS using single-view long-axis echocardiography without Doppler characterization. Objective To deploy DASSi to patients with no AS or with mild or moderate AS at baseline to identify AS development and progression. Design, Setting, and Participants This is a cohort study that examined 2 cohorts of patients without severe AS undergoing echocardiography in the Yale New Haven Health System (YNHHS; 2015-2021) and Cedars-Sinai Medical Center (CSMC; 2018-2019). A novel computational pipeline for the cross-modal translation of DASSi into cardiac magnetic resonance (CMR) imaging was further developed in the UK Biobank. Analyses were performed between August 2023 and February 2024. Exposure DASSi (range, 0-1) derived from AI applied to echocardiography and CMR videos. Main Outcomes and Measures Annualized change in peak aortic valve velocity (AV-V max ) and late (>6 months) aortic valve replacement (AVR). Results A total of 12 599 participants were included in the echocardiographic study (YNHHS: n = 8798; median [IQR] age, 71 [60-80] years; 4250 [48.3%] women; median [IQR] follow-up, 4.1 [2.4-5.4] years; and CSMC: n = 3801; median [IQR] age, 67 [54-78] years; 1685 [44.3%] women; median [IQR] follow-up, 3.4 [2.8-3.9] years). Higher baseline DASSi was associated with faster progression in AV-V max (per 0.1 DASSi increment: YNHHS, 0.033 m/s per year [95% CI, 0.028-0.038] among 5483 participants; CSMC, 0.082 m/s per year [95% CI, 0.053-0.111] among 1292 participants), with values of 0.2 or greater associated with a 4- to 5-fold higher AVR risk than values less than 0.2 (YNHHS: 715 events; adjusted hazard ratio [HR], 4.97 [95% CI, 2.71-5.82]; CSMC: 56 events; adjusted HR, 4.04 [95% CI, 0.92-17.70]), independent of age, sex, race, ethnicity, ejection fraction, and AV-V max . This was reproduced across 45 474 participants (median [IQR] age, 65 [59-71] years; 23 559 [51.8%] women; median [IQR] follow-up, 2.5 [1.6-3.9] years) undergoing CMR imaging in the UK Biobank (for participants with DASSi ≥0.2 vs those with DASSi <.02, adjusted HR, 11.38 [95% CI, 2.56-50.57]). Saliency maps and phenome-wide association studies supported associations with cardiac structure and function and traditional cardiovascular risk factors. Conclusions and Relevance In this cohort study of patients without severe AS undergoing echocardiography or CMR imaging, a new AI-based video biomarker was independently associated with AS development and progression, enabling opportunistic risk stratification across cardiovascular imaging modalities as well as potential application on handheld devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TZZZZ发布了新的文献求助20
刚刚
1秒前
3秒前
北木黎完成签到,获得积分10
3秒前
LMY完成签到,获得积分10
4秒前
4秒前
FJY完成签到,获得积分10
4秒前
李健的小迷弟应助兴奋芷采纳,获得10
5秒前
周涛发布了新的文献求助10
5秒前
牛蛙煲完成签到,获得积分10
6秒前
刘启迪完成签到,获得积分10
7秒前
戴先森发布了新的文献求助10
7秒前
8秒前
kerio发布了新的文献求助10
9秒前
Mintkarla完成签到,获得积分10
9秒前
22关闭了22文献求助
10秒前
陈同学完成签到,获得积分10
10秒前
11秒前
TZZZZ完成签到,获得积分10
13秒前
阿西吧发布了新的文献求助10
13秒前
13秒前
在水一方应助Yeah_椰椰采纳,获得10
14秒前
15秒前
cgg发布了新的文献求助10
15秒前
15秒前
无花果应助后山monkey采纳,获得10
17秒前
瘦瘦的傲松关注了科研通微信公众号
18秒前
zzy发布了新的文献求助10
18秒前
18秒前
柳柳完成签到,获得积分10
18秒前
sansan完成签到,获得积分10
19秒前
20秒前
Tasker-X完成签到,获得积分10
20秒前
kkkl发布了新的文献求助10
20秒前
梦夜孤星完成签到 ,获得积分10
20秒前
星星气球发布了新的文献求助10
20秒前
科研通AI2S应助平常采纳,获得10
21秒前
隐形曼青应助滕达采纳,获得10
21秒前
22秒前
Wonderflu发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149784
求助须知:如何正确求助?哪些是违规求助? 2800775
关于积分的说明 7841901
捐赠科研通 2458351
什么是DOI,文献DOI怎么找? 1308425
科研通“疑难数据库(出版商)”最低求助积分说明 628499
版权声明 601706