GlobalMind: Global multi-head interactive self-attention network for hyperspectral change detection

高光谱成像 计算机科学 计算 分割 透视图(图形) 特征(语言学) 人工智能 数据挖掘 模式识别(心理学) 遥感 算法 地理 语言学 哲学
作者
Meiqi Hu,Chen Wu,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 465-483 被引量:5
标识
DOI:10.1016/j.isprsjprs.2024.04.002
摘要

High spectral resolution imagery of the Earth's surface enables users to monitor changes over time in fine- grained scale, playing an increasingly important role in agriculture, defense, and emergency response. However, most current algorithms are still confined to describing local features and fail to incorporate a global perspective, which limits their ability to capture interactions between global features, thus usually resulting in incomplete change regions. In this paper, we proposed a Global Multi-head INteractive self-attention change Detection network (GlobalMind) to explore the implicit correlation between different surface objects and variant land cover transformations, acquiring a comprehensive understanding of the data and accurate change detection result. Firstly, a simple but effective Global Axial Segmentation (GAS) strategy is designed to expand the self-attention computation along the row space or column space of hyperspectral images, allowing the global connection with high efficiency. Secondly, with GAS, the global spatial multi-head interactive self-attention (GlobalM) module is crafted to mine the abundant spatial-spectral feature involving potential correlations between the ground objects from the entire rich and complex hyperspectral space. Moreover, to acquire the accurate and complete cross-temporal changes, we devise a global temporal interactive multi-head self-attention (GlobalD) module which incorporates the relevance and variation of bi-temporal spatial-spectral features, deriving the integrate potential same kind of changes in the local and global range with the combination of GAS. A new and challenging hyperspectral change detection dataset is designed for comparison of different approaches. We perform extensive experiments on six real hyperspectral datasets, and our method outperforms the state-of-the-art algorithms with high accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maox1aoxin应助科研通管家采纳,获得100
刚刚
英姑应助科研通管家采纳,获得10
刚刚
劲秉应助科研通管家采纳,获得10
刚刚
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得30
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
LL应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
科研通AI5应助suzzky采纳,获得10
3秒前
山乞凡完成签到 ,获得积分10
3秒前
Hong_Bin完成签到,获得积分10
4秒前
Jacob发布了新的文献求助10
4秒前
4秒前
5秒前
lit完成签到,获得积分10
5秒前
111完成签到,获得积分20
5秒前
浅蓝色候鸟完成签到 ,获得积分10
5秒前
君君发布了新的文献求助30
5秒前
tuanzi发布了新的文献求助10
6秒前
星星发布了新的文献求助10
6秒前
aqz完成签到,获得积分10
6秒前
6秒前
7秒前
乌木发布了新的文献求助10
7秒前
ZHANGCHAOHANG完成签到,获得积分10
8秒前
漂亮的秋天完成签到,获得积分10
8秒前
球球发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540304
求助须知:如何正确求助?哪些是违规求助? 3117769
关于积分的说明 9332287
捐赠科研通 2815471
什么是DOI,文献DOI怎么找? 1547621
邀请新用户注册赠送积分活动 721067
科研通“疑难数据库(出版商)”最低求助积分说明 712445