Electrostatic Potential as Solvent Descriptor to Enable Rational Electrolyte Design for Lithium Batteries

溶剂化 电解质 溶剂 锂(药物) 材料科学 溶剂效应 静电学 化学 物理化学 有机化学 医学 电极 内分泌学
作者
Yanzhou Wu,Qiao Hu,Hongmei Liang,Aiping Wang,Hong Xu,Li Wang,Xiangming He
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (22) 被引量:123
标识
DOI:10.1002/aenm.202300259
摘要

Abstract Artificial intelligence/machine learning (AI/ML) applied to battery research is considered to be a powerful tool for accelerating the research cycle. However, the development of appropriate materials descriptors is often the first hurdle toward implementing meaningful and accurate AI/ML. Currently, rational solvent selection remains a significant challenge in electrolyte development and is still based on experiments. The dielectric constant (ε) and donor number (DN) in electrolyte design are insufficient. Finding theoretically computable solvent descriptors for evaluating Li + solvation is a significant step toward accelerating electrolyte development. Here, based on the electrostatic interaction between Li + and solvent, the electrostatic potential (ESP) of electrolyte solvent is calculated by density functional theory calculations and reveals significant regularity. ESP as a direct and simple solvent descriptor for conveniently designing electrolytes is proposed. The lowest negative electrostatic potential (ESP min ) ensures the nucleophilic capacity of the solvating solvent and the weak ESP min means decreased solvation energy. Weak ESP min and strong highest positive electrostatic potential (ESP max ) are the main characteristics of non‐solvating antisolvents. Using the plot of ESP min – ESP max strong solvating solvent, weakly solvating solvent, or antisolvent are identified that have been used in electrolyte engineering. This solvent descriptor can boost AI/ML to develop high performance electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
HoraDorathy发布了新的文献求助10
2秒前
落骛发布了新的文献求助10
2秒前
2秒前
深情安青应助海意采纳,获得10
3秒前
4秒前
Orange应助你滴勋宗啊采纳,获得10
4秒前
5秒前
Wand发布了新的文献求助10
5秒前
oh应助dlch采纳,获得10
6秒前
8秒前
liuyiman发布了新的文献求助10
9秒前
华仔应助二掌柜采纳,获得10
9秒前
野性的鹭洋完成签到,获得积分10
9秒前
华仔应助Mmxn采纳,获得10
10秒前
勤恳翠芙发布了新的文献求助10
11秒前
顾矜应助保持好心情采纳,获得10
12秒前
Wand完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
赘婿应助遇见馅儿饼采纳,获得10
16秒前
张雯思发布了新的文献求助30
16秒前
17秒前
洋葱完成签到,获得积分10
17秒前
忐忑的天真完成签到 ,获得积分10
17秒前
CC完成签到,获得积分10
17秒前
17秒前
风中亦旋完成签到,获得积分10
18秒前
18秒前
艾格尔的小提琴完成签到 ,获得积分10
18秒前
oh应助勤恳翠芙采纳,获得10
19秒前
20秒前
充电宝应助彪壮的机器猫采纳,获得10
20秒前
赚大钱发布了新的文献求助10
20秒前
GLORIA发布了新的文献求助10
22秒前
乐乐应助BK_采纳,获得10
22秒前
JinGN完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020