Electrostatic Potential as Solvent Descriptor to Enable Rational Electrolyte Design for Lithium Batteries

溶剂化 电解质 溶剂 锂(药物) 材料科学 溶剂效应 静电学 化学 物理化学 有机化学 医学 电极 内分泌学
作者
Yanzhou Wu,Qiao Hu,Hongmei Liang,Aiping Wang,Hong Xu,Li Wang,Xiangming He
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (22) 被引量:183
标识
DOI:10.1002/aenm.202300259
摘要

Abstract Artificial intelligence/machine learning (AI/ML) applied to battery research is considered to be a powerful tool for accelerating the research cycle. However, the development of appropriate materials descriptors is often the first hurdle toward implementing meaningful and accurate AI/ML. Currently, rational solvent selection remains a significant challenge in electrolyte development and is still based on experiments. The dielectric constant (ε) and donor number (DN) in electrolyte design are insufficient. Finding theoretically computable solvent descriptors for evaluating Li + solvation is a significant step toward accelerating electrolyte development. Here, based on the electrostatic interaction between Li + and solvent, the electrostatic potential (ESP) of electrolyte solvent is calculated by density functional theory calculations and reveals significant regularity. ESP as a direct and simple solvent descriptor for conveniently designing electrolytes is proposed. The lowest negative electrostatic potential (ESP min ) ensures the nucleophilic capacity of the solvating solvent and the weak ESP min means decreased solvation energy. Weak ESP min and strong highest positive electrostatic potential (ESP max ) are the main characteristics of non‐solvating antisolvents. Using the plot of ESP min – ESP max strong solvating solvent, weakly solvating solvent, or antisolvent are identified that have been used in electrolyte engineering. This solvent descriptor can boost AI/ML to develop high performance electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王同学完成签到 ,获得积分10
刚刚
LL发布了新的文献求助10
刚刚
田哲完成签到 ,获得积分10
刚刚
今后应助张姐采纳,获得10
1秒前
2秒前
于水清发布了新的文献求助20
4秒前
lovt123发布了新的文献求助10
4秒前
5秒前
王圈完成签到 ,获得积分10
5秒前
缓慢的誉发布了新的文献求助10
7秒前
臭弟弟你别摆了完成签到,获得积分10
8秒前
丑鸭子完成签到,获得积分10
9秒前
10秒前
陈末应助77seven采纳,获得10
10秒前
senli2018发布了新的文献求助10
11秒前
浮游应助答题不卡采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
Battery应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
云海0620应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Jasper应助神仙没有草原采纳,获得10
13秒前
13秒前
13秒前
13秒前
领导范儿应助TARS采纳,获得10
14秒前
浮游应助小刘采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
烟花应助YJ采纳,获得10
17秒前
18秒前
xiaohen完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474