Electrostatic Potential as Solvent Descriptor to Enable Rational Electrolyte Design for Lithium Batteries

溶剂化 电解质 溶剂 锂(药物) 材料科学 溶剂效应 静电学 化学 物理化学 有机化学 医学 电极 内分泌学
作者
Yanzhou Wu,Qiao Hu,Hongmei Liang,Aiping Wang,Hong Xu,Li Wang,Xiangming He
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (22) 被引量:67
标识
DOI:10.1002/aenm.202300259
摘要

Abstract Artificial intelligence/machine learning (AI/ML) applied to battery research is considered to be a powerful tool for accelerating the research cycle. However, the development of appropriate materials descriptors is often the first hurdle toward implementing meaningful and accurate AI/ML. Currently, rational solvent selection remains a significant challenge in electrolyte development and is still based on experiments. The dielectric constant (ε) and donor number (DN) in electrolyte design are insufficient. Finding theoretically computable solvent descriptors for evaluating Li + solvation is a significant step toward accelerating electrolyte development. Here, based on the electrostatic interaction between Li + and solvent, the electrostatic potential (ESP) of electrolyte solvent is calculated by density functional theory calculations and reveals significant regularity. ESP as a direct and simple solvent descriptor for conveniently designing electrolytes is proposed. The lowest negative electrostatic potential (ESP min ) ensures the nucleophilic capacity of the solvating solvent and the weak ESP min means decreased solvation energy. Weak ESP min and strong highest positive electrostatic potential (ESP max ) are the main characteristics of non‐solvating antisolvents. Using the plot of ESP min – ESP max strong solvating solvent, weakly solvating solvent, or antisolvent are identified that have been used in electrolyte engineering. This solvent descriptor can boost AI/ML to develop high performance electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiao金发布了新的文献求助10
1秒前
clearlove发布了新的文献求助10
1秒前
2秒前
Singularity应助滴滴采纳,获得10
3秒前
乔木完成签到,获得积分10
3秒前
科研通AI2S应助毛竹采纳,获得10
4秒前
4秒前
6秒前
四月晚风发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
nil发布了新的文献求助10
8秒前
9秒前
9秒前
Ella发布了新的文献求助10
9秒前
陈晨完成签到,获得积分20
11秒前
12秒前
13秒前
13秒前
14秒前
插兜无对手完成签到,获得积分10
14秒前
可爱的函函应助xingzou采纳,获得10
14秒前
w1b发布了新的文献求助10
14秒前
上杉淮宇完成签到,获得积分10
15秒前
王浩宇发布了新的文献求助10
15秒前
16秒前
Ella完成签到,获得积分10
18秒前
er发布了新的文献求助10
18秒前
我是老大应助111采纳,获得10
19秒前
毛竹发布了新的文献求助10
19秒前
FashionBoy应助刀123采纳,获得10
22秒前
洁净荔枝关注了科研通微信公众号
24秒前
我是你奶发布了新的文献求助20
24秒前
MAYAN完成签到 ,获得积分10
24秒前
24秒前
25秒前
陈晨发布了新的文献求助30
26秒前
TY完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3132974
求助须知:如何正确求助?哪些是违规求助? 2784219
关于积分的说明 7765186
捐赠科研通 2439347
什么是DOI,文献DOI怎么找? 1296754
科研通“疑难数据库(出版商)”最低求助积分说明 624678
版权声明 600771