ExpACVO-Hybrid Deep learning: Exponential Anti Corona Virus Optimization enabled Hybrid Deep learning for tongue image segmentation towards diabetes mellitus detection

深度学习 计算机科学 人工智能 随机森林 糖尿病 人工神经网络 模式识别(心理学) 医学 内分泌学
作者
Jimsha K Mathew,S Sathyalakshmi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104635-104635 被引量:2
标识
DOI:10.1016/j.bspc.2023.104635
摘要

A metabolic disease known as diabetes mellitus (DM) is primarily brought on by an increase in blood sugar levels. On the other hand, DM and the complications it causes, such as diabetic Retinopathy (DR), will quickly emerge as one of the major health challenges of the twenty-first century. This indicates a huge economic burden on health-related authorities and governments. The detection of DM in the earlier stage can lead to early diagnosis and a considerable drop in mortality. Therefore, in order to detect DM at an early stage, an efficient detection system having the ability to detect DM is required. An effective classification method, named Exponential Anti Corona Virus Optimization (ExpACVO) is devised in this research work for Diabetes Mellitus (DM) detection using tongue images. Here, the UNet-Conditional Random Field-Recurrent Neural Network (UNet-CRF-RNN) is used to segment the images, and the proposed ExpACVO algorithm is used to train the UNet-CRF-RNN. Deep Q Network (DQN) classifier is used for DM detection, and the proposed ExpACVO is used for DQN training. The proposed ExpACVO algorithm is a newly created formula that combines Anti Corona Virus Optimization(ACVO) with Exponential Weighted Moving Average (EWMA). With maximum testing accuracy, sensitivity, and specificity values of 0.932, 0.950, and 0.914, respectively, the developed technique thus achieved improved performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yangfeidong完成签到,获得积分20
2秒前
GONG完成签到,获得积分10
2秒前
4秒前
三十完成签到 ,获得积分10
7秒前
8秒前
9秒前
zho发布了新的文献求助10
9秒前
小蘑菇应助MUWENYING采纳,获得10
10秒前
寒冷以蓝发布了新的文献求助30
11秒前
12秒前
小蘑菇应助忐忑的阑香采纳,获得10
12秒前
叶卿卿发布了新的文献求助20
13秒前
zhaozhao完成签到,获得积分10
13秒前
LiuChuannan完成签到,获得积分10
14秒前
wyy发布了新的文献求助10
14秒前
SciGPT应助子期采纳,获得10
15秒前
16秒前
小二郎应助lxz采纳,获得10
16秒前
歪歪发布了新的文献求助10
17秒前
奋斗的钥匙完成签到,获得积分10
17秒前
ured发布了新的文献求助20
18秒前
Aliks完成签到,获得积分10
18秒前
GaryTyh发布了新的文献求助10
18秒前
shi123发布了新的文献求助10
18秒前
坦率尔琴发布了新的文献求助10
19秒前
zzlark完成签到,获得积分10
19秒前
20秒前
22秒前
24秒前
虞访云发布了新的文献求助30
27秒前
37秒前
等我吃胖完成签到,获得积分10
37秒前
luckyd完成签到 ,获得积分0
38秒前
xu55完成签到,获得积分20
39秒前
40秒前
fang完成签到 ,获得积分10
40秒前
40秒前
研友_yLpzpZ完成签到,获得积分10
41秒前
Aten完成签到,获得积分10
41秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211825
求助须知:如何正确求助?哪些是违规求助? 2860726
关于积分的说明 8125559
捐赠科研通 2526561
什么是DOI,文献DOI怎么找? 1360397
科研通“疑难数据库(出版商)”最低求助积分说明 643212
邀请新用户注册赠送积分活动 615333