Energy-Efficient Federated Learning With Resource Allocation for Green IoT Edge Intelligence in B5G

计算机科学 边缘计算 能源消耗 边缘设备 GSM演进的增强数据速率 资源配置 高效能源利用 分布式计算 计算复杂性理论 带宽分配 带宽(计算) 无线 传输(电信) 计算机网络 云计算 人工智能 算法 电信 工程类 电气工程 操作系统
作者
Adeb Salh,Razali Ngah,Lukman Audah‏,Kwang Soon Kim,Qazwan Abdullah,Yahya M. Al‐Moliki,Khaled Aljaloud,Hairul Nizam Talib
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 16353-16367 被引量:18
标识
DOI:10.1109/access.2023.3244099
摘要

An edge intelligence-aided Internet-of-Things (IoT) network has been proposed to accelerate the response of IoT services by deploying edge intelligence near IoT devices. The transmission of data from IoT devices to the edge nodes leads to large network traffic in the wireless connections. Federated Learning (FL) is proposed to solve the high computational complexity by training the model locally on IoT devices and sharing the model parameters in the edge nodes. This paper focuses on developing an efficient integration of joint edge intelligence nodes depending on investigating an energy-efficient bandwidth allocation, computing Central Processing Unit (CPU) frequency, optimization transmission power, and the desired level of learning accuracy to minimize the energy consumption and satisfy the FL time requirement for all IoT devices. The proposal efficiently optimized the computation frequency allocation and reduced energy consumption in IoT devices by solving the bandwidth optimization problem in closed form. The remaining computational frequency allocation, transmission power allocation, and loss could be resolved with an Alternative Direction Algorithm (ADA) to reduce energy consumption and complexity at every iteration of FL time from IoT devices to edge intelligence nodes. The simulation results indicated that the proposed ADA can adapt the central processing unit frequency and power transmission control to reduce energy consumption at the cost of a small growth of FL time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Ran完成签到 ,获得积分10
3秒前
孤星泪完成签到,获得积分10
3秒前
颖宝老公完成签到,获得积分10
5秒前
冥月发布了新的文献求助10
7秒前
羽化成仙完成签到 ,获得积分10
8秒前
科研通AI2S应助zhouji采纳,获得10
8秒前
小蘑菇应助Jenny采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
kedaya应助科研通管家采纳,获得10
11秒前
贰鸟应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
Gauss应助科研通管家采纳,获得30
11秒前
贰鸟应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
贰鸟应助科研通管家采纳,获得10
11秒前
贰鸟应助科研通管家采纳,获得10
11秒前
Olivia完成签到 ,获得积分10
12秒前
火山上的鲍师傅完成签到,获得积分10
12秒前
zxcvbnm完成签到 ,获得积分10
14秒前
yile完成签到,获得积分10
14秒前
16秒前
香蕉梨愁完成签到 ,获得积分10
16秒前
冥月完成签到,获得积分10
17秒前
yuaasusanaann完成签到,获得积分10
19秒前
青山落日秋月春风完成签到,获得积分10
20秒前
争气完成签到,获得积分10
20秒前
甜粥完成签到,获得积分20
23秒前
Sober完成签到 ,获得积分10
24秒前
要减肥的半山完成签到,获得积分10
26秒前
深情安青应助渊思采纳,获得10
26秒前
在水一方应助菜鸟12采纳,获得10
28秒前
干饭大王应助Olivia采纳,获得20
29秒前
思源应助糖葫芦采纳,获得20
30秒前
31秒前
我爱达不溜完成签到,获得积分20
33秒前
王昕钥发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343