材料科学
格式化
法拉第效率
电极
电解
氧化物
铜
可逆氢电极
电化学
化学工程
锡
氧化锡
阳极
扩散
电流密度
纳米颗粒
碳纤维
无机化学
纳米技术
工作电极
电解质
催化作用
化学
复合材料
冶金
有机化学
物理化学
量子力学
工程类
热力学
复合数
物理
作者
Tengyi Liu,Keitaro Ohashi,Kaito Nagita,Takashi Harada,Shuji Nakanishi,Kazuhide Kamiya
出处
期刊:Small
[Wiley]
日期:2022-11-01
卷期号:18 (50)
被引量:14
标识
DOI:10.1002/smll.202205323
摘要
Abstract The electrochemical CO 2 reduction reaction (CO 2 RR) is a promising strategy for closing the carbon cycle. Increasing the current density ( J ) for CO 2 RR products is a critical requirement for the social implementation of this technology. Herein, nanoscale tin–oxide‐modified copper–oxide foam is hybridized with a carbon‐based gas‐diffusion electrode (GDE). Using the resultant electrode, the J formate is increased to −1152 mA cm −2 at −1.2 V versus RHE in 1 m KOH, which is the highest value for CO 2 ‐to‐formate electrolysis. The formate faradaic efficiency (FE formate ) reaches ≈99% at −0.6 V versus RHE. The achievement of ultra‐high‐rate formate production is attributable to the following factors: i) homogeneously‐modified Sn atoms suppressing H 2 evolution and ii) the hydrophobic carbon nanoparticles on GDEs penetrating the macroporous structure of the foam causing the increase in the thickness of triple‐phase interface. Additionally, the FE formate remains at ≈70% under a high J of −1.0 A cm −2 for more than 20 h.
科研通智能强力驱动
Strongly Powered by AbleSci AI