亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study

背景(考古学) 医学 回顾性队列研究 免疫检查点 肺癌 癌症 单变量分析 肿瘤科 多元分析 内科学 免疫疗法 生物 古生物学
作者
Maliazurina Saad,Lingzhi Hong,Muhammad Aminu,Natalie I. Vokes,Pingjun Chen,Morteza Salehjahromi,Kang Qin,Sheeba J. Sujit,Xuetao Lu,Elliana Young,Qasem Al-Tashi,Rizwan Qureshi,Carol C. Wu,Brett W. Carter,Steven H. Lin,Percy P. Lee,Saumil Gandhi,Joe Y. Chang,Ruijiang Li,Michael F. Gensheimer,Heather A. Wakelee,Joel W. Neal,Hyun‐Sung Lee,Chao Cheng,Vamsidhar Velcheti,Yanyan Lou,Milena Petranović,Waree Rinsurongkawong,Xiuning Le,Vadeerat Rinsurongkawong,Amy Spelman,Yasir Y. Elamin,Marcelo V. Negrão,Ferdinandos Skoulidis,Carl M. Gay,Tina Cascone,Mara B. Antonoff,Boris Sepesi,Jeff Lewis,Ignacio I. Wistuba,John D. Hazle,Caroline Chung,David A. Jaffray,Don L. Gibbons,Ara A. Vaporciyan,J. Jack Lee,John V. Heymach,Jianjun Zhang,Jia Wu
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (7): e404-e420 被引量:32
标识
DOI:10.1016/s2589-7500(23)00082-1
摘要

Summary

Background

Only around 20–30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context.

Methods

In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK negative NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics.

Findings

Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features.

Interpretation

This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer.

Funding

National Institutes of Health, Mark Foundation Damon Runyon Foundation Physician Scientist Award, MD Anderson Strategic Initiative Development Program, MD Anderson Lung Moon Shot Program, Andrea Mugnaini, and Edward L C Smith.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助newplayer采纳,获得10
1秒前
宅心仁厚完成签到 ,获得积分10
5秒前
称心剑鬼完成签到,获得积分10
7秒前
自由冰凡完成签到 ,获得积分10
11秒前
jl完成签到,获得积分10
28秒前
jl驳回了余未晚应助
34秒前
天才鱼完成签到 ,获得积分10
39秒前
CipherSage应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
JDM发布了新的文献求助30
1分钟前
科研通AI2S应助JDM采纳,获得10
1分钟前
怡然的友容完成签到 ,获得积分10
2分钟前
2分钟前
充电宝应助沉默棉花糖采纳,获得10
2分钟前
顺利白竹完成签到 ,获得积分10
2分钟前
深情安青应助皮皮蟹采纳,获得10
2分钟前
2分钟前
2分钟前
隐形曼青应助athena采纳,获得10
2分钟前
皮皮蟹发布了新的文献求助10
2分钟前
橙子发布了新的文献求助30
2分钟前
2分钟前
athena发布了新的文献求助10
3分钟前
时间的过客完成签到,获得积分20
3分钟前
kk_1315完成签到,获得积分10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
111xasb完成签到,获得积分10
3分钟前
something完成签到,获得积分10
3分钟前
3分钟前
起风了完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
现代青枫完成签到,获得积分10
4分钟前
Hello应助yangon采纳,获得10
4分钟前
m赤子心完成签到 ,获得积分10
4分钟前
4分钟前
沿途一天发布了新的文献求助10
4分钟前
yangon发布了新的文献求助10
4分钟前
JamesPei应助幽默的冷之采纳,获得10
4分钟前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179828
求助须知:如何正确求助?哪些是违规求助? 2830333
关于积分的说明 7976276
捐赠科研通 2491800
什么是DOI,文献DOI怎么找? 1328949
科研通“疑难数据库(出版商)”最低求助积分说明 635580
版权声明 602927