作者
Maliazurina Saad,Lingzhi Hong,Muhammad Aminu,Natalie I. Vokes,Pingjun Chen,Morteza Salehjahromi,Kang Qin,Sheeba J. Sujit,Xuetao Lu,Elliana Young,Qasem Al-Tashi,Rizwan Qureshi,Carol C. Wu,Brett W. Carter,Steven H. Lin,Percy P. Lee,Saumil Gandhi,Joe Y. Chang,Ruijiang Li,Michael F. Gensheimer,Heather A. Wakelee,Joel W. Neal,Hyun‐Sung Lee,Chao Cheng,Vamsidhar Velcheti,Yanyan Lou,Milena Petranović,Waree Rinsurongkawong,Xiuning Le,Vadeerat Rinsurongkawong,Amy Spelman,Yasir Y. Elamin,Marcelo V. Negrão,Ferdinandos Skoulidis,Carl M. Gay,Tina Cascone,Mara B. Antonoff,Boris Sepesi,Jeff Lewis,Ignacio I. Wistuba,John D. Hazle,Caroline Chung,David A. Jaffray,Don L. Gibbons,Ara A. Vaporciyan,J. Jack Lee,John V. Heymach,Jianjun Zhang,Jia Wu
摘要
Only around 20-30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context.