Survival analysis for pediatric heart transplant patients using a novel machine learning algorithm: A UNOS analysis

医学 随机森林 梯度升压 比例危险模型 机器学习 移植 生存分析 人工智能 体质指数 功率变换 统计 算法 内科学 计算机科学 数学 一致性(知识库)
作者
Awais Ashfaq,Geoffrey Gray,Jennifer Carapelluci,Ernest K. Amankwah,Mohamed Rehman,Michael D. Puchalski,Andrew Smith,James A. Quintessenza,Jessica A. Laks,Luis Ahumada,Alfred Asante‐Korang
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier]
卷期号:42 (10): 1341-1348 被引量:1
标识
DOI:10.1016/j.healun.2023.06.006
摘要

Background Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Methods Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. Results A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Conclusions Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions. Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洪山老狗完成签到,获得积分10
刚刚
钱烨华完成签到,获得积分10
刚刚
王安石完成签到,获得积分20
刚刚
瑾玉完成签到,获得积分10
刚刚
周大会关注了科研通微信公众号
1秒前
FashionBoy应助nan采纳,获得10
1秒前
金珠珠完成签到 ,获得积分10
1秒前
ice7完成签到,获得积分10
2秒前
2秒前
xfy完成签到,获得积分10
2秒前
云喆瑜瑾完成签到,获得积分10
2秒前
Vincent1990完成签到,获得积分10
3秒前
3秒前
高高发布了新的文献求助10
3秒前
cing完成签到,获得积分10
4秒前
Depeng完成签到,获得积分10
4秒前
Ava应助懒羊羊采纳,获得10
5秒前
6秒前
浪浪山第一酷完成签到,获得积分10
6秒前
6秒前
Endeavor完成签到,获得积分10
6秒前
6秒前
苦行僧发布了新的文献求助10
7秒前
Ava应助Reborn采纳,获得10
7秒前
shr完成签到,获得积分10
7秒前
选择性哑巴完成签到 ,获得积分10
7秒前
田様应助HHEHK采纳,获得10
8秒前
活力菠萝完成签到,获得积分10
8秒前
淡定鸿涛发布了新的文献求助10
8秒前
cc完成签到,获得积分10
9秒前
lessormoto发布了新的文献求助10
9秒前
wjx完成签到,获得积分10
9秒前
泡泡球完成签到,获得积分10
9秒前
洋了个洋洋完成签到,获得积分10
9秒前
米妮完成签到 ,获得积分10
9秒前
10秒前
10秒前
阳yang完成签到,获得积分10
10秒前
团结完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167451
求助须知:如何正确求助?哪些是违规求助? 2818967
关于积分的说明 7923963
捐赠科研通 2478773
什么是DOI,文献DOI怎么找? 1320495
科研通“疑难数据库(出版商)”最低求助积分说明 632806
版权声明 602443