亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Survival analysis for pediatric heart transplant patients using a novel machine learning algorithm: A UNOS analysis

医学 随机森林 梯度升压 比例危险模型 机器学习 移植 生存分析 人工智能 体质指数 功率变换 统计 算法 内科学 计算机科学 数学 一致性(知识库)
作者
Awais Ashfaq,Geoffrey Gray,Jennifer Carapelluci,Ernest K. Amankwah,Mohamed Rehman,Michael D. Puchalski,Andrew Smith,James A. Quintessenza,Jessica A. Laks,Luis Ahumada,Alfred Asante‐Korang
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier]
卷期号:42 (10): 1341-1348 被引量:2
标识
DOI:10.1016/j.healun.2023.06.006
摘要

Background Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Methods Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. Results A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Conclusions Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions. Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
Jasper应助Koala04采纳,获得10
25秒前
ding应助sunshineboy采纳,获得10
45秒前
传奇3应助literature采纳,获得10
50秒前
充电宝应助科研通管家采纳,获得10
53秒前
科研通AI6应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得20
53秒前
2分钟前
taffysl完成签到,获得积分10
2分钟前
sunshineboy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6.1应助mrhughas采纳,获得10
2分钟前
2分钟前
ajing发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
3分钟前
fdu_sf发布了新的文献求助10
3分钟前
3分钟前
3分钟前
mrhughas发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Koala04发布了新的文献求助10
3分钟前
共享精神应助抹茶采纳,获得10
3分钟前
mrhughas完成签到,获得积分10
3分钟前
田様应助张尧摇摇摇采纳,获得10
4分钟前
4分钟前
4分钟前
Koala04完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457