Survival analysis for pediatric heart transplant patients using a novel machine learning algorithm: A UNOS analysis

医学 随机森林 梯度升压 比例危险模型 机器学习 移植 生存分析 人工智能 体质指数 功率变换 统计 算法 内科学 计算机科学 数学 一致性(知识库)
作者
Awais Ashfaq,Geoffrey Gray,Jennifer Carapelluci,Ernest K. Amankwah,Mohamed Rehman,Michael D. Puchalski,Andrew Smith,James A. Quintessenza,Jessica A. Laks,Luis Ahumada,Alfred Asante‐Korang
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier BV]
卷期号:42 (10): 1341-1348 被引量:2
标识
DOI:10.1016/j.healun.2023.06.006
摘要

Background Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Methods Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. Results A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Conclusions Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions. Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
imEda完成签到,获得积分10
1秒前
淡然的发带完成签到,获得积分10
1秒前
orixero应助chenchen采纳,获得10
1秒前
segovia_tju发布了新的文献求助10
2秒前
2秒前
邓少龙发布了新的文献求助10
2秒前
2秒前
PePsi完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
细胞核完成签到,获得积分10
5秒前
呜哈哈发布了新的文献求助10
5秒前
可爱的函函应助pp1230采纳,获得10
5秒前
6秒前
qianchen发布了新的文献求助10
6秒前
CipherSage应助快乐无极限采纳,获得10
6秒前
6秒前
alpv发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
顺利毕业发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
醉仙完成签到,获得积分10
9秒前
9秒前
可靠的难胜完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
小布发布了新的文献求助10
11秒前
11秒前
wlm发布了新的文献求助10
11秒前
hqz发布了新的文献求助10
11秒前
Tina完成签到,获得积分10
11秒前
Hello应助开朗的念云采纳,获得10
11秒前
大个应助邓少龙采纳,获得30
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662961
求助须知:如何正确求助?哪些是违规求助? 3223721
关于积分的说明 9752858
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606229
邀请新用户注册赠送积分活动 758325
科研通“疑难数据库(出版商)”最低求助积分说明 734785