Survival analysis for pediatric heart transplant patients using a novel machine learning algorithm: A UNOS analysis

医学 随机森林 梯度升压 比例危险模型 机器学习 移植 生存分析 人工智能 体质指数 功率变换 统计 算法 内科学 计算机科学 数学 一致性(知识库)
作者
Awais Ashfaq,Geoffrey Gray,Jennifer Carapelluci,Ernest K. Amankwah,Mohamed Rehman,Michael D. Puchalski,Andrew Smith,James A. Quintessenza,Jessica A. Laks,Luis Ahumada,Alfred Asante‐Korang
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier BV]
卷期号:42 (10): 1341-1348 被引量:2
标识
DOI:10.1016/j.healun.2023.06.006
摘要

Background Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Methods Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. Results A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Conclusions Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions. Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Hcx采纳,获得10
刚刚
帝释天I发布了新的文献求助10
刚刚
1秒前
yao完成签到,获得积分10
1秒前
若修发布了新的文献求助10
1秒前
慕青应助草莓奶冻采纳,获得10
1秒前
tsai完成签到,获得积分10
2秒前
lucas发布了新的文献求助10
2秒前
2秒前
铜豌豆发布了新的文献求助10
3秒前
科研小蔡发布了新的文献求助10
3秒前
浮游应助虚拟的钻石采纳,获得10
3秒前
科研通AI5应助天琪采纳,获得10
3秒前
wjx关闭了wjx文献求助
3秒前
lbx发布了新的文献求助10
3秒前
孤僻完成签到,获得积分10
3秒前
yao发布了新的文献求助10
4秒前
卡比兽发布了新的文献求助10
4秒前
烟花应助hjhj采纳,获得10
4秒前
科研通AI6应助Sun采纳,获得10
4秒前
流萤完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
科研通AI5应助瘦瘦怀亦采纳,获得10
6秒前
6秒前
6秒前
香蕉觅云应助欧阳采纳,获得10
7秒前
小赖不赖发布了新的文献求助10
7秒前
7秒前
8秒前
朴实的天佑完成签到,获得积分10
8秒前
细腻的外套完成签到,获得积分10
8秒前
张伟完成签到,获得积分10
8秒前
9秒前
帝释天I完成签到,获得积分10
9秒前
杨扬完成签到,获得积分20
9秒前
爆米花应助热心的皮皮虾采纳,获得10
9秒前
yrh完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4989279
求助须知:如何正确求助?哪些是违规求助? 4238634
关于积分的说明 13203306
捐赠科研通 4032607
什么是DOI,文献DOI怎么找? 2206278
邀请新用户注册赠送积分活动 1217556
关于科研通互助平台的介绍 1135744