Survival analysis for pediatric heart transplant patients using a novel machine learning algorithm: A UNOS analysis

医学 随机森林 梯度升压 比例危险模型 机器学习 移植 生存分析 人工智能 体质指数 功率变换 统计 算法 内科学 计算机科学 数学 一致性(知识库)
作者
Awais Ashfaq,Geoffrey Gray,Jennifer Carapelluci,Ernest K. Amankwah,Mohamed Rehman,Michael D. Puchalski,Andrew Smith,James A. Quintessenza,Jessica A. Laks,Luis Ahumada,Alfred Asante‐Korang
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier BV]
卷期号:42 (10): 1341-1348 被引量:2
标识
DOI:10.1016/j.healun.2023.06.006
摘要

Background Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Methods Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. Results A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Conclusions Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions. Impact of pretransplantation risk factors on mortality in the first year after heart transplantation remains largely unknown. Using machine learning algorithms, we selected clinically relevant identifiers that could predict 1-year mortality after pediatric heart transplantation. Data were obtained from the United Network for Organ Sharing Database for years 2010-2020 for patients 0-17 years receiving their first heart transplant (N = 4150). Features were selected using subject experts and literature review. Scikit-Learn, Scikit-Survival, and Tensorflow were used. A train:test split of 70:30 was used. N-repeated k-fold validation was performed (N = 5, k = 5). Seven models were tested, Hyperparameter tuning performed using Bayesian optimization and the concordance index (C-index) was used for model assessment. A C-index above 0.6 for test data was considered acceptable for survival analysis models. C-indices obtained were 0.60 (Cox proportional hazards), 0.61 (Cox with elastic net), 0.64 (gradient boosting), 0.64 (support vector machine), 0.68 (random forest), 0.66 (component gradient boosting), and 0.54 (survival trees). Machine learning models show an improvement over the traditional Cox proportional hazards model, with random forest performing the best on the test set. Analysis of the feature importance for the gradient boosted model found that the top 5 features were the most recent serum total bilirubin, the travel distance from the transplant center, the patient body mass index, the deceased donor terminal Serum glutamic pyruvic transaminase/Alanine transaminase (SGPT/ALT), and the donor PCO2. Combination of machine learning and expert-based methodology of selecting predictors of survival for pediatric heart transplantation provides a reasonable prediction of 1- and 3-year survival outcomes. SHapley Additive exPlanations can be an effective tool for modeling and visualizing nonlinear interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椰子完成签到 ,获得积分10
刚刚
安夏完成签到,获得积分10
1秒前
蜜桃乌龙茶完成签到,获得积分10
1秒前
颜万声完成签到,获得积分10
1秒前
1秒前
2秒前
张希伦完成签到 ,获得积分10
2秒前
CipherSage应助斜玉采纳,获得30
3秒前
我是老大应助Helly采纳,获得10
3秒前
3秒前
栀初完成签到,获得积分10
4秒前
4秒前
yaeshin完成签到,获得积分10
4秒前
爱上学的小金完成签到 ,获得积分10
4秒前
4秒前
6秒前
6秒前
6秒前
chemier027完成签到,获得积分10
9秒前
学术小钻风完成签到,获得积分20
9秒前
vikoel完成签到,获得积分10
9秒前
hayden完成签到,获得积分10
9秒前
77发布了新的文献求助20
10秒前
Deng完成签到,获得积分10
10秒前
深情安青应助JoshuaChen采纳,获得10
10秒前
Moscrol发布了新的文献求助10
11秒前
11秒前
黑天鹅完成签到,获得积分20
11秒前
冯宇关注了科研通微信公众号
11秒前
lin完成签到,获得积分10
11秒前
破晓完成签到,获得积分10
12秒前
13秒前
潇湘夜雨完成签到,获得积分10
13秒前
上官若男应助lane采纳,获得10
14秒前
黑天鹅发布了新的文献求助30
14秒前
科研小白完成签到,获得积分10
14秒前
neil发布了新的文献求助10
15秒前
岁月流年完成签到,获得积分10
15秒前
动听的靖琪完成签到,获得积分10
15秒前
ZhX完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582