A Two-stage Method with a Shared 3D U-Net for Left Atrial Segmentation of Late Gadolinium-Enhanced MRI Images

雅卡索引 豪斯多夫距离 分割 Sørensen–骰子系数 人工智能 计算机科学 卷积神经网络 深度学习 模式识别(心理学) 稳态自由进动成像 掷骰子 磁共振成像 图像分割 数据挖掘 医学 数学 放射科 统计
作者
Jieyun Bai,Ruiyu Qiu,Jianyu Chen,Liyuan Wang,Lulu Li,Yanfeng Tian,Huijun Wang,Yaosheng Lu,Jichao Zhao
出处
期刊:Cardiovascular innovations and applications [Compuscript]
卷期号:8 (1) 被引量:2
标识
DOI:10.15212/cvia.2023.0039
摘要

Objective: This study was aimed at validating the accuracy of a proposed algorithm for fully automatic 3D left atrial segmentation and to compare its performance with existing deep learning algorithms. Methods: A two-stage method with a shared 3D U-Net was proposed to segment the 3D left atrium. In this architecture, the 3D U-Net was used to extract 3D features, a two-stage strategy was used to decrease segmentation error caused by the class imbalance problem, and the shared network was designed to decrease model complexity. Model performance was evaluated with the DICE score, Jaccard index and Hausdorff distance. Results: Algorithm development and evaluation were performed with a set of 100 late gadolinium-enhanced cardiovascular magnetic resonance images. Our method achieved a DICE score of 0.918, a Jaccard index of 0.848 and a Hausdorff distance of 1.211, thus, outperforming existing deep learning algorithms. The best performance of the proposed model (DICE: 0.851; Jaccard: 0.750; Hausdorff distance: 4.382) was also achieved on a publicly available 2013 image data set. Conclusion: The proposed two-stage method with a shared 3D U-Net is an efficient algorithm for fully automatic 3D left atrial segmentation. This study provides a solution for processing large datasets in resource-constrained applications. Significance Statement: Studying atrial structure directly is crucial for comprehending and managing atrial fibrillation (AF). Accurate reconstruction and measurement of atrial geometry for clinical purposes remains challenging, despite potential improvements in the visibility of AF-associated structures with late gadolinium-enhanced magnetic resonance imaging. This difficulty arises from the varying intensities caused by increased tissue enhancement and artifacts, as well as variability in image quality. Therefore, an efficient algorithm for fully automatic 3D left atrial segmentation is proposed in the present study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jocelyn发布了新的文献求助10
1秒前
1秒前
1秒前
十一完成签到 ,获得积分10
3秒前
4秒前
内丹翠完成签到,获得积分20
4秒前
沉淀淀发布了新的文献求助10
5秒前
zhangjianan发布了新的文献求助10
5秒前
liudan发布了新的文献求助10
5秒前
Orange应助gww采纳,获得10
6秒前
一秋一年发布了新的文献求助10
7秒前
Ripples完成签到,获得积分10
7秒前
彭于晏应助只喝露水采纳,获得10
8秒前
9秒前
浪遏飞舟发布了新的文献求助10
10秒前
10秒前
难过以晴应助和谐项链采纳,获得10
11秒前
希望天下0贩的0应助凯文采纳,获得10
11秒前
13秒前
14秒前
许大大完成签到,获得积分10
14秒前
贤惠的翰发布了新的文献求助10
14秒前
Willy完成签到,获得积分10
15秒前
星河发布了新的文献求助10
15秒前
16秒前
善学以致用应助VioletRyu采纳,获得10
16秒前
852应助gww采纳,获得10
17秒前
17秒前
汉堡包应助zhangjianan采纳,获得10
18秒前
19秒前
20秒前
小超发布了新的文献求助20
21秒前
21秒前
沉淀淀完成签到,获得积分10
22秒前
ppttyy完成签到 ,获得积分10
24秒前
24秒前
25秒前
miao发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950846
求助须知:如何正确求助?哪些是违规求助? 4213481
关于积分的说明 13104765
捐赠科研通 3995430
什么是DOI,文献DOI怎么找? 2186907
邀请新用户注册赠送积分活动 1202153
关于科研通互助平台的介绍 1115408