A Two-stage Method with a Shared 3D U-Net for Left Atrial Segmentation of Late Gadolinium-Enhanced MRI Images

雅卡索引 豪斯多夫距离 分割 Sørensen–骰子系数 人工智能 计算机科学 卷积神经网络 深度学习 模式识别(心理学) 稳态自由进动成像 掷骰子 磁共振成像 图像分割 数据挖掘 医学 数学 放射科 统计
作者
Jieyun Bai,Ruiyu Qiu,Jianyu Chen,Liyuan Wang,Lulu Li,Yanfeng Tian,Huijun Wang,Yaosheng Lu,Jichao Zhao
出处
期刊:Cardiovascular innovations and applications [Compuscript, Ltd.]
卷期号:8 (1) 被引量:2
标识
DOI:10.15212/cvia.2023.0039
摘要

Objective: This study was aimed at validating the accuracy of a proposed algorithm for fully automatic 3D left atrial segmentation and to compare its performance with existing deep learning algorithms. Methods: A two-stage method with a shared 3D U-Net was proposed to segment the 3D left atrium. In this architecture, the 3D U-Net was used to extract 3D features, a two-stage strategy was used to decrease segmentation error caused by the class imbalance problem, and the shared network was designed to decrease model complexity. Model performance was evaluated with the DICE score, Jaccard index and Hausdorff distance. Results: Algorithm development and evaluation were performed with a set of 100 late gadolinium-enhanced cardiovascular magnetic resonance images. Our method achieved a DICE score of 0.918, a Jaccard index of 0.848 and a Hausdorff distance of 1.211, thus, outperforming existing deep learning algorithms. The best performance of the proposed model (DICE: 0.851; Jaccard: 0.750; Hausdorff distance: 4.382) was also achieved on a publicly available 2013 image data set. Conclusion: The proposed two-stage method with a shared 3D U-Net is an efficient algorithm for fully automatic 3D left atrial segmentation. This study provides a solution for processing large datasets in resource-constrained applications. Significance Statement: Studying atrial structure directly is crucial for comprehending and managing atrial fibrillation (AF). Accurate reconstruction and measurement of atrial geometry for clinical purposes remains challenging, despite potential improvements in the visibility of AF-associated structures with late gadolinium-enhanced magnetic resonance imaging. This difficulty arises from the varying intensities caused by increased tissue enhancement and artifacts, as well as variability in image quality. Therefore, an efficient algorithm for fully automatic 3D left atrial segmentation is proposed in the present study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伴夏完成签到,获得积分10
刚刚
1秒前
zzz完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
又或完成签到,获得积分10
1秒前
bkagyin应助ssss采纳,获得10
1秒前
pkqbkl完成签到,获得积分20
1秒前
清脆的葵阴完成签到,获得积分10
1秒前
千空完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
酷波er应助英勇雁芙采纳,获得10
3秒前
应应发布了新的文献求助10
3秒前
3秒前
HHH完成签到,获得积分10
4秒前
Archer发布了新的文献求助10
4秒前
YzUCC发布了新的文献求助10
5秒前
木刻青、发布了新的文献求助10
5秒前
善学以致用应助S_pingan采纳,获得10
6秒前
默默书竹完成签到,获得积分10
8秒前
8秒前
Demo关注了科研通微信公众号
9秒前
9秒前
10秒前
deansy完成签到,获得积分10
10秒前
ABC发布了新的文献求助10
10秒前
优秀妙芹完成签到 ,获得积分10
10秒前
11秒前
changaipei发布了新的文献求助10
11秒前
11秒前
11秒前
冲鸭发布了新的文献求助10
11秒前
11秒前
13秒前
Lesile发布了新的文献求助10
14秒前
14秒前
14秒前
洪对对完成签到 ,获得积分10
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583573
求助须知:如何正确求助?哪些是违规求助? 4667363
关于积分的说明 14766995
捐赠科研通 4609622
什么是DOI,文献DOI怎么找? 2529351
邀请新用户注册赠送积分活动 1498473
关于科研通互助平台的介绍 1467170