A Two-stage Method with a Shared 3D U-Net for Left Atrial Segmentation of Late Gadolinium-Enhanced MRI Images

雅卡索引 豪斯多夫距离 分割 Sørensen–骰子系数 人工智能 计算机科学 卷积神经网络 深度学习 模式识别(心理学) 稳态自由进动成像 掷骰子 磁共振成像 图像分割 数据挖掘 医学 数学 放射科 统计
作者
Jieyun Bai,Ruiyu Qiu,Jianyu Chen,Liyuan Wang,Lulu Li,Yanfeng Tian,Huijun Wang,Yaosheng Lu,Jichao Zhao
出处
期刊:Cardiovascular innovations and applications [Compuscript]
卷期号:8 (1) 被引量:2
标识
DOI:10.15212/cvia.2023.0039
摘要

Objective: This study was aimed at validating the accuracy of a proposed algorithm for fully automatic 3D left atrial segmentation and to compare its performance with existing deep learning algorithms. Methods: A two-stage method with a shared 3D U-Net was proposed to segment the 3D left atrium. In this architecture, the 3D U-Net was used to extract 3D features, a two-stage strategy was used to decrease segmentation error caused by the class imbalance problem, and the shared network was designed to decrease model complexity. Model performance was evaluated with the DICE score, Jaccard index and Hausdorff distance. Results: Algorithm development and evaluation were performed with a set of 100 late gadolinium-enhanced cardiovascular magnetic resonance images. Our method achieved a DICE score of 0.918, a Jaccard index of 0.848 and a Hausdorff distance of 1.211, thus, outperforming existing deep learning algorithms. The best performance of the proposed model (DICE: 0.851; Jaccard: 0.750; Hausdorff distance: 4.382) was also achieved on a publicly available 2013 image data set. Conclusion: The proposed two-stage method with a shared 3D U-Net is an efficient algorithm for fully automatic 3D left atrial segmentation. This study provides a solution for processing large datasets in resource-constrained applications. Significance Statement: Studying atrial structure directly is crucial for comprehending and managing atrial fibrillation (AF). Accurate reconstruction and measurement of atrial geometry for clinical purposes remains challenging, despite potential improvements in the visibility of AF-associated structures with late gadolinium-enhanced magnetic resonance imaging. This difficulty arises from the varying intensities caused by increased tissue enhancement and artifacts, as well as variability in image quality. Therefore, an efficient algorithm for fully automatic 3D left atrial segmentation is proposed in the present study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白笙发布了新的文献求助10
1秒前
1秒前
panmin发布了新的文献求助60
1秒前
1秒前
2秒前
哈哈发布了新的文献求助10
2秒前
2秒前
英勇飞机完成签到 ,获得积分10
2秒前
lkq发布了新的文献求助10
2秒前
Millian完成签到 ,获得积分10
3秒前
冷艳如南发布了新的文献求助10
3秒前
姆姆没买发布了新的文献求助10
4秒前
4秒前
lllhhh7发布了新的文献求助10
4秒前
屠俊豪完成签到,获得积分10
5秒前
kyt发布了新的文献求助10
5秒前
胡0515_发布了新的文献求助10
6秒前
7秒前
CNS_Fighter88发布了新的文献求助10
7秒前
聪明的青荷完成签到,获得积分10
7秒前
研友_VZG7GZ应助钢笔采纳,获得10
8秒前
亭语完成签到 ,获得积分10
9秒前
10秒前
10秒前
崔凯完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
司空悒完成签到,获得积分0
12秒前
12秒前
22222发布了新的文献求助10
13秒前
美好斓发布了新的文献求助10
13秒前
柚子发布了新的文献求助10
15秒前
口味虾发布了新的文献求助10
15秒前
小刘发布了新的文献求助10
15秒前
任性映秋发布了新的文献求助10
15秒前
17秒前
粥游天下完成签到,获得积分10
17秒前
科研通AI6应助优美的雁丝采纳,获得10
18秒前
hhh发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289641
求助须知:如何正确求助?哪些是违规求助? 4441165
关于积分的说明 13826825
捐赠科研通 4323621
什么是DOI,文献DOI怎么找? 2373243
邀请新用户注册赠送积分活动 1368665
关于科研通互助平台的介绍 1332557