Error prediction of balancing machine calibration based on machine learning method

制动器 过程(计算) 支持向量机 校准 计算机科学 决策树 工厂(面向对象编程) 盘式制动器 机床 树(集合论) 振动 人工智能 控制理论(社会学) 工程类 机器学习 控制工程 汽车工程 机械工程 数学 统计 数学分析 量子力学 物理 操作系统 程序设计语言 控制(管理)
作者
Yanjuan Hu,Wenjun Lv,Zhanli Wang,Liang Liu,Hongliang Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:184: 109736-109736 被引量:8
标识
DOI:10.1016/j.ymssp.2022.109736
摘要

This paper proposes a method of compensating for brake disc balance error by using a machine learning algorithm. Automobile brake discs in the production process will inevitably produce unbalance. The unevenness produced by the uneven mass distribution will produce high-frequency vibration in the process of high-speed rotation, which seriously affects the safety of the vehicle and the personal safety of the occupants. The key measure to solve this problem is to correct the unbalance with higher precision before the brake disc leaves the factory. The traditional correction method is to improve the detection accuracy of unbalance to achieve balance accuracy. In this paper, we hope to improve the balance accuracy by compensating for the errors generated in the correction process. We use the random forest model, decision tree model, and support vector machine model to predict the errors of the balancing machine during the calibration process. The main idea is to take the parameters of the brake disc and the features in the milling process as input and the error amplitude as output. The results show that the stochastic forest model has higher prediction accuracy than the decision tree model and support vector machine model. This method can also predict errors from other sources, such as thermal errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿姨洗铁路完成签到 ,获得积分10
3秒前
抹不掉的记忆完成签到,获得积分10
5秒前
5秒前
余杭村王小虎完成签到,获得积分10
6秒前
韭黄完成签到,获得积分20
10秒前
jeffrey完成签到,获得积分10
10秒前
Rondab应助机灵枕头采纳,获得10
16秒前
佳无夜完成签到,获得积分10
21秒前
摆哥完成签到,获得积分10
25秒前
66完成签到,获得积分10
30秒前
zlqq完成签到 ,获得积分10
30秒前
Hardskills发布了新的文献求助10
33秒前
34秒前
之_ZH完成签到 ,获得积分10
42秒前
gds2021完成签到 ,获得积分10
44秒前
你好呀嘻嘻完成签到 ,获得积分10
44秒前
梅特卡夫完成签到,获得积分10
46秒前
熊雅完成签到,获得积分10
47秒前
49秒前
睡到自然醒完成签到 ,获得积分10
50秒前
cis2014完成签到,获得积分10
52秒前
独特的大有完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
55秒前
xingyi完成签到,获得积分10
57秒前
58秒前
舒心的秋荷完成签到 ,获得积分10
1分钟前
zz123发布了新的文献求助10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
粗犷的灵松完成签到,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
ncuwzq完成签到,获得积分10
1分钟前
yshj完成签到 ,获得积分10
1分钟前
1分钟前
净禅完成签到 ,获得积分10
1分钟前
1分钟前
迷人的寒风完成签到,获得积分10
1分钟前
1分钟前
water应助科研通管家采纳,获得10
1分钟前
Lucas应助HHHAN采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022