已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mental Status Detection for Schizophrenia Patients via Deep Visual Perception

精神分裂症(面向对象编程) 认知心理学 背景(考古学) 计算机科学 人工智能 心理学 面部表情 模式 机器学习 精神科 社会科学 生物 社会学 古生物学
作者
Bing-Jhang Lin,Yi‐Ting Lin,Chen‐Chung Liu,Lue-En Lee,Chih-Yuan Chuang,An-Sheng Liu,Shu‐Hui Hung,Li‐Chen Fu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5704-5715 被引量:6
标识
DOI:10.1109/jbhi.2022.3199575
摘要

Schizophrenia is a mental disorder that will progressively change a person's mental state and cause serious social problems. Symptoms of schizophrenia are highly correlated to emotional status, especially depression. We are thus motivated to design a mental status detection system for schizophrenia patients in order to provide an assessment tool for mental health professionals. Our system consists of two phases, including model learning and status detection. For the learning phase, we propose a multi-task learning framework to infer the patient's mental state, including emotion and depression severity. Unlike previous studies inferring emotional status mainly by facial analysis, in the learning phase, we adopted a Cross-Modality Graph Convolutional Network (CMGCN) to effectively integrate visual features from different modalities, including the face and context. We also designed task-aware objective functions to realize better model convergence for multi-task learning, i.e., emotion recognition and depression estimation. Further, we followed the correlation between depression and emotion to design the Emotion Passer module, to transfer the prior knowledge on emotion to the depression model. For the detection phase, we drew on characteristics of schizophrenia to detect the mental status. In the experiments, we performed a series of experiments on several benchmark datasets, and the results show that the proposed learning framework boosts state-of-the-art (SOTA) methods significantly. In addition, we take a trial on schizophrenia patients, and our system can achieve 69.52 in mAP in a real situation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
心动nofear发布了新的文献求助10
3秒前
4秒前
淡定从霜发布了新的文献求助10
5秒前
一袋薯片发布了新的文献求助10
5秒前
浩西完成签到 ,获得积分10
6秒前
ding应助橙子fy16_采纳,获得10
7秒前
大模型应助purplelove采纳,获得10
7秒前
clinlinlinlin发布了新的文献求助10
9秒前
酷波er应助朴实的百招采纳,获得10
10秒前
留着待会儿完成签到,获得积分10
11秒前
SzyAzns完成签到,获得积分10
14秒前
天天快乐应助萧水白采纳,获得100
15秒前
17秒前
17秒前
17秒前
俭朴夜雪完成签到,获得积分10
18秒前
抽疯的电风扇13完成签到 ,获得积分10
18秒前
激情的一斩完成签到 ,获得积分10
19秒前
linkman发布了新的文献求助30
21秒前
汉堡包应助clinlinlinlin采纳,获得10
21秒前
ofafafa完成签到 ,获得积分10
22秒前
23秒前
欣喜柚子完成签到 ,获得积分10
24秒前
John发布了新的文献求助10
25秒前
蓝色逍遥鱼完成签到,获得积分10
27秒前
aslink完成签到,获得积分10
27秒前
Bingzheng发布了新的文献求助10
29秒前
29秒前
32秒前
风至完成签到,获得积分10
34秒前
gy发布了新的文献求助10
34秒前
Dasiliy完成签到,获得积分20
36秒前
37秒前
Bmo完成签到,获得积分10
37秒前
朴实的百招完成签到,获得积分10
37秒前
小佳小佳完成签到 ,获得积分10
38秒前
39秒前
Bmo发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502916
关于积分的说明 11110677
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802191