亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MFRFNN: Multi-Functional Recurrent Fuzzy Neural Network for Chaotic Time Series Prediction

混乱的 计算机科学 人工神经网络 时间序列 模糊逻辑 循环神经网络 系列(地层学) 人工智能 机器学习 生物 古生物学
作者
Hamid Nasiri,Mohammad Mehdi Ebadzadeh
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:507: 292-310 被引量:74
标识
DOI:10.1016/j.neucom.2022.08.032
摘要

Chaotic time series prediction, a challenging research topic in dynamic system modeling, has drawn great attention from researchers around the world. In recent years extensive researches have been done on developing chaotic time series prediction methods, and various models have been proposed. Among them, recurrent fuzzy neural networks (RFNNs) have shown significant potential in this area. Most of the proposed RFNNs learn a single function, but when dealing with chaotic time series, different outputs may be generated for a specific input based on the system’s state. So, a network is required that can learn multiple functions simultaneously. Based on this concept, a novel multi-functional recurrent fuzzy neural network (MFRFNN) is proposed in this paper. MFRFNN consists of two fuzzy neural networks with Takagi-Sugeno-Kang fuzzy rules, one is used to produce the output, and the other to determine the system’s state. There is a feedback loop between these two networks, which makes MFRFNN capable of learning and memorizing historical information of past observations. Employing the states allows the proposed network to learn multiple functions simultaneously. Moreover, a new learning algorithm, which employs the particle swarm optimization algorithm, is developed to train the networks’ weights. The effectiveness of MFRFNN is validated using the Lorenz and Rossler chaotic time series and four real-world datasets, including Box–Jenkins gas furnace, wind speed prediction, Google stock price prediction, and air quality index prediction. Based on the root mean square error, the proposed method shows a decrease of 35.12%,13.95%, and 49.62% from the second best methods in the Lorenz time series, Box–Jenkins gas furnace, and wind speed prediction dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩完成签到 ,获得积分20
17秒前
20秒前
孙孙发布了新的文献求助10
25秒前
彭于晏应助蒙豆儿采纳,获得30
55秒前
1分钟前
蒙豆儿发布了新的文献求助30
1分钟前
依然灬聆听完成签到,获得积分10
1分钟前
Z可完成签到,获得积分10
1分钟前
科研通AI2S应助pxy采纳,获得10
2分钟前
orixero应助袁青寒采纳,获得10
2分钟前
3分钟前
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
5分钟前
嘻嘻完成签到,获得积分10
5分钟前
abc完成签到 ,获得积分10
5分钟前
lixuebin完成签到 ,获得积分10
7分钟前
NexusExplorer应助狂奔弟弟采纳,获得10
7分钟前
7分钟前
狂奔弟弟发布了新的文献求助10
7分钟前
狂奔弟弟完成签到,获得积分10
7分钟前
a61完成签到,获得积分10
7分钟前
8分钟前
zsc发布了新的文献求助10
8分钟前
HYQ完成签到 ,获得积分10
9分钟前
MchemG完成签到,获得积分0
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
Ava应助科研通管家采纳,获得10
9分钟前
沐雨微寒完成签到,获得积分10
10分钟前
科研通AI6应助马良采纳,获得10
10分钟前
科研通AI2S应助hairgod采纳,获得10
10分钟前
hairgod完成签到,获得积分10
11分钟前
Jasper应助科研通管家采纳,获得10
11分钟前
12分钟前
马良发布了新的文献求助10
12分钟前
科研通AI5应助马良采纳,获得10
13分钟前
bkagyin应助狂奔弟弟采纳,获得10
13分钟前
13分钟前
13分钟前
狂奔弟弟发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582292
求助须知:如何正确求助?哪些是违规求助? 4000077
关于积分的说明 12382091
捐赠科研通 3674945
什么是DOI,文献DOI怎么找? 2025541
邀请新用户注册赠送积分活动 1059261
科研通“疑难数据库(出版商)”最低求助积分说明 945875