MFRFNN: Multi-Functional Recurrent Fuzzy Neural Network for Chaotic Time Series Prediction

混乱的 计算机科学 人工神经网络 时间序列 模糊逻辑 循环神经网络 系列(地层学) 人工智能 机器学习 生物 古生物学
作者
Hamid Nasiri,Mohammad Mehdi Ebadzadeh
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:507: 292-310 被引量:58
标识
DOI:10.1016/j.neucom.2022.08.032
摘要

Chaotic time series prediction, a challenging research topic in dynamic system modeling, has drawn great attention from researchers around the world. In recent years extensive researches have been done on developing chaotic time series prediction methods, and various models have been proposed. Among them, recurrent fuzzy neural networks (RFNNs) have shown significant potential in this area. Most of the proposed RFNNs learn a single function, but when dealing with chaotic time series, different outputs may be generated for a specific input based on the system’s state. So, a network is required that can learn multiple functions simultaneously. Based on this concept, a novel multi-functional recurrent fuzzy neural network (MFRFNN) is proposed in this paper. MFRFNN consists of two fuzzy neural networks with Takagi-Sugeno-Kang fuzzy rules, one is used to produce the output, and the other to determine the system’s state. There is a feedback loop between these two networks, which makes MFRFNN capable of learning and memorizing historical information of past observations. Employing the states allows the proposed network to learn multiple functions simultaneously. Moreover, a new learning algorithm, which employs the particle swarm optimization algorithm, is developed to train the networks’ weights. The effectiveness of MFRFNN is validated using the Lorenz and Rossler chaotic time series and four real-world datasets, including Box–Jenkins gas furnace, wind speed prediction, Google stock price prediction, and air quality index prediction. Based on the root mean square error, the proposed method shows a decrease of 35.12%,13.95%, and 49.62% from the second best methods in the Lorenz time series, Box–Jenkins gas furnace, and wind speed prediction dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1b发布了新的文献求助10
1秒前
FashionBoy应助王王采纳,获得10
1秒前
2秒前
123完成签到 ,获得积分10
2秒前
cccxy发布了新的文献求助10
2秒前
2秒前
3秒前
yznfly应助fei采纳,获得50
3秒前
4秒前
4秒前
塔玛希完成签到,获得积分10
5秒前
务实的易真完成签到,获得积分10
5秒前
5秒前
鸣笛应助科研小子采纳,获得30
6秒前
7秒前
萧萧萧完成签到,获得积分10
7秒前
yuanttx发布了新的文献求助10
7秒前
7秒前
机智篮球发布了新的文献求助10
7秒前
陈小满发布了新的文献求助10
8秒前
王静姝发布了新的文献求助10
9秒前
10秒前
10秒前
哎哟可爱发布了新的文献求助10
10秒前
JamesPei应助冷冷子采纳,获得20
10秒前
李爱国应助雷霆康康采纳,获得10
10秒前
10秒前
11秒前
快乐难敌发布了新的文献求助10
11秒前
wenhao发布了新的文献求助10
11秒前
12秒前
12秒前
朵朵完成签到,获得积分10
12秒前
NingZH完成签到,获得积分10
12秒前
lisier发布了新的文献求助10
12秒前
lan完成签到,获得积分10
13秒前
liz发布了新的文献求助10
13秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271