亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MFRFNN: Multi-Functional Recurrent Fuzzy Neural Network for Chaotic Time Series Prediction

混乱的 计算机科学 人工神经网络 时间序列 模糊逻辑 循环神经网络 系列(地层学) 人工智能 机器学习 生物 古生物学
作者
Hamid Nasiri,Mohammad Mehdi Ebadzadeh
出处
期刊:Neurocomputing [Elsevier]
卷期号:507: 292-310 被引量:58
标识
DOI:10.1016/j.neucom.2022.08.032
摘要

Chaotic time series prediction, a challenging research topic in dynamic system modeling, has drawn great attention from researchers around the world. In recent years extensive researches have been done on developing chaotic time series prediction methods, and various models have been proposed. Among them, recurrent fuzzy neural networks (RFNNs) have shown significant potential in this area. Most of the proposed RFNNs learn a single function, but when dealing with chaotic time series, different outputs may be generated for a specific input based on the system’s state. So, a network is required that can learn multiple functions simultaneously. Based on this concept, a novel multi-functional recurrent fuzzy neural network (MFRFNN) is proposed in this paper. MFRFNN consists of two fuzzy neural networks with Takagi-Sugeno-Kang fuzzy rules, one is used to produce the output, and the other to determine the system’s state. There is a feedback loop between these two networks, which makes MFRFNN capable of learning and memorizing historical information of past observations. Employing the states allows the proposed network to learn multiple functions simultaneously. Moreover, a new learning algorithm, which employs the particle swarm optimization algorithm, is developed to train the networks’ weights. The effectiveness of MFRFNN is validated using the Lorenz and Rossler chaotic time series and four real-world datasets, including Box–Jenkins gas furnace, wind speed prediction, Google stock price prediction, and air quality index prediction. Based on the root mean square error, the proposed method shows a decrease of 35.12%,13.95%, and 49.62% from the second best methods in the Lorenz time series, Box–Jenkins gas furnace, and wind speed prediction dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
124332发布了新的文献求助10
4秒前
yangzai完成签到 ,获得积分10
18秒前
124332发布了新的文献求助10
25秒前
42秒前
lovelife完成签到,获得积分10
43秒前
124332发布了新的文献求助10
44秒前
124332发布了新的文献求助10
56秒前
sunny完成签到,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得200
1分钟前
yangguang2000应助科研通管家采纳,获得10
1分钟前
124332发布了新的文献求助30
1分钟前
124332发布了新的文献求助10
1分钟前
你看起来好好吃完成签到 ,获得积分10
1分钟前
124332发布了新的文献求助10
1分钟前
1分钟前
雨声完成签到,获得积分10
1分钟前
124332发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ZHErain发布了新的文献求助10
2分钟前
2分钟前
2分钟前
hwq发布了新的文献求助10
2分钟前
124332发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
己凡发布了新的文献求助10
2分钟前
2分钟前
汉堡包应助124332采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
不知道是谁完成签到,获得积分10
3分钟前
syalonyui完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
己凡发布了新的文献求助10
3分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265467
求助须知:如何正确求助?哪些是违规求助? 2905520
关于积分的说明 8333941
捐赠科研通 2575806
什么是DOI,文献DOI怎么找? 1400130
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532