Continuous Estimation of Human Joint Angles From sEMG Using a Multi-Feature Temporal Convolutional Attention-Based Network

卷积神经网络 人工智能 计算机科学 特征(语言学) 模式识别(心理学) 特征提取 特征工程 符号 均方误差 接头(建筑物) 运动(物理) 人工神经网络 语音识别 机器学习 深度学习 数学 统计 工程类 建筑工程 哲学 语言学 算术
作者
Shurun Wang,Hao Tang,Lifu Gao,Qi Tan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5461-5472 被引量:6
标识
DOI:10.1109/jbhi.2022.3198640
摘要

Intention recognition based on surface electromyography (sEMG) signals is pivotal in human-machine interaction (HMI), where continuous motion estimation with high accuracy has been the challenge. The convolutional neural network (CNN) possesses excellent feature extraction capability. Still, it is difficult for ordinary CNN to explore the dependencies of time-series data, so most researchers adopt the recurrent neural network or its variants (e.g., LSTM) for motion estimation tasks. This paper proposes a multi-feature temporal convolutional attention-based network (MFTCAN) to recognize joint angles continuously. First, we recruited ten subjects to accomplish the signal acquisition experiments in different motion patterns. Then, we developed a joint training mechanism that integrates MFTCAN with commonly used statistical algorithms, and the integrated architectures were named MFTCAN-KNR, MFTCAN-SVR and MFTCAN-LR. Last, we utilized two performance indicators (RMSE and [Formula: see text]) to evaluate the effect of different methods. Moreover, we further validated the performance of the proposed method on the open dataset (Ninapro DB2). When evaluating on the original dataset, the average RMSE of the estimations obtained by MFTCAN-KNR is 0.14, which is significantly less than the results obtained by LSTM (0.20) and BP (0.21). The average [Formula: see text] of the estimations obtained by MFTCAN-KNR is 0.87, indicating the anti-disturbance ability of the architecture. Moreover, MFTCAN-KNR also achieves high performance when evaluating on the open dataset. The proposed methods can effectively accomplish the task of motion estimation, allowing further implementations in the human-exoskeleton interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhaosiqi完成签到 ,获得积分10
1秒前
Mia完成签到,获得积分10
1秒前
快乐的元正完成签到,获得积分10
2秒前
2秒前
YTT发布了新的文献求助10
4秒前
下雨的颜色完成签到,获得积分10
5秒前
painting应助chrisLin采纳,获得10
5秒前
秀丽小猫咪举报ddj求助涉嫌违规
7秒前
zhuniyukuai完成签到,获得积分10
7秒前
8秒前
8秒前
nan发布了新的文献求助10
12秒前
Lulu完成签到,获得积分10
12秒前
李爱国应助快乐的元正采纳,获得10
12秒前
辛勤金连完成签到,获得积分10
14秒前
ZHANG完成签到,获得积分10
14秒前
玩命的书琴完成签到,获得积分10
14秒前
烧饼拌糖完成签到,获得积分10
15秒前
研友_VZG7GZ应助Zp采纳,获得10
15秒前
可爱的函函应助壮观梦易采纳,获得10
19秒前
周全敏完成签到 ,获得积分10
20秒前
dalei001完成签到 ,获得积分10
21秒前
22秒前
歪歪完成签到,获得积分10
23秒前
科研通AI2S应助研友_rLmrgn采纳,获得10
23秒前
24秒前
糯米种子完成签到,获得积分10
25秒前
26秒前
llllll完成签到,获得积分10
27秒前
Lyue发布了新的文献求助10
27秒前
林非鹿发布了新的文献求助30
27秒前
科目三应助苗条的寒珊采纳,获得10
30秒前
大龙哥886应助大力的问蕊采纳,获得10
31秒前
31秒前
黎娅完成签到 ,获得积分10
32秒前
mjc完成签到 ,获得积分10
33秒前
andy完成签到,获得积分10
33秒前
Orange应助ttg990720采纳,获得10
33秒前
科研通AI2S应助葡萄柚采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281