Continuous Estimation of Human Joint Angles From sEMG Using a Multi-Feature Temporal Convolutional Attention-Based Network

卷积神经网络 人工智能 计算机科学 特征(语言学) 模式识别(心理学) 特征提取 特征工程 符号 均方误差 接头(建筑物) 运动(物理) 人工神经网络 语音识别 机器学习 深度学习 数学 统计 工程类 哲学 算术 建筑工程 语言学
作者
Shurun Wang,Hao Tang,Lifu Gao,Qi Tan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (11): 5461-5472 被引量:1
标识
DOI:10.1109/jbhi.2022.3198640
摘要

Intention recognition based on surface electromyography (sEMG) signals is pivotal in human-machine interaction (HMI), where continuous motion estimation with high accuracy has been the challenge. The convolutional neural network (CNN) possesses excellent feature extraction capability. Still, it is difficult for ordinary CNN to explore the dependencies of time-series data, so most researchers adopt the recurrent neural network or its variants (e.g., LSTM) for motion estimation tasks. This paper proposes a multi-feature temporal convolutional attention-based network (MFTCAN) to recognize joint angles continuously. First, we recruited ten subjects to accomplish the signal acquisition experiments in different motion patterns. Then, we developed a joint training mechanism that integrates MFTCAN with commonly used statistical algorithms, and the integrated architectures were named MFTCAN-KNR, MFTCAN-SVR and MFTCAN-LR. Last, we utilized two performance indicators (RMSE and [Formula: see text]) to evaluate the effect of different methods. Moreover, we further validated the performance of the proposed method on the open dataset (Ninapro DB2). When evaluating on the original dataset, the average RMSE of the estimations obtained by MFTCAN-KNR is 0.14, which is significantly less than the results obtained by LSTM (0.20) and BP (0.21). The average [Formula: see text] of the estimations obtained by MFTCAN-KNR is 0.87, indicating the anti-disturbance ability of the architecture. Moreover, MFTCAN-KNR also achieves high performance when evaluating on the open dataset. The proposed methods can effectively accomplish the task of motion estimation, allowing further implementations in the human-exoskeleton interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ipeakkka发布了新的文献求助10
1秒前
Jzhang应助迷人的映雁采纳,获得10
1秒前
1秒前
zzz完成签到,获得积分10
2秒前
2秒前
小安发布了新的文献求助10
2秒前
3秒前
叶未晞yi完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
kilig应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得30
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
博ge发布了新的文献求助10
8秒前
9秒前
葶儿发布了新的文献求助10
9秒前
hgcyp完成签到,获得积分10
14秒前
ysh完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
17秒前
wang完成签到,获得积分10
18秒前
Jzhang应助Yimim采纳,获得10
19秒前
沐风发布了新的文献求助20
20秒前
汉关发布了新的文献求助10
22秒前
22秒前
葶儿完成签到,获得积分10
22秒前
安详中蓝完成签到 ,获得积分10
23秒前
呆萌士晋发布了新的文献求助10
23秒前
23秒前
25秒前
呆头发布了新的文献求助10
27秒前
若水发布了新的文献求助200
28秒前
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824