Deep learning for tibial plateau fracture detection and classification

高原(数学) 断裂(地质) 人工智能 胫骨平台骨折 深度学习 计算机科学 地质学 数学 岩土工程 数学分析
作者
Nynke van der Gaast,Prachi Bagave,Nick Assink,Sebastiaan Broos,Ruurd L. Jaarsma,Michael J. Edwards,Erik Hermans,Frank F. A. IJpma,Alexander Ding,Job N. Doornberg,Jacobien H. F. Oosterhoff
出处
期刊:Knee [Elsevier]
卷期号:54: 81-89
标识
DOI:10.1016/j.knee.2025.02.001
摘要

Deep learning (DL) has been shown to be successful in interpreting radiographs and aiding in fracture detection and classification. However, no study has aimed to develop a computer vision model for tibia plateau fractures using the Schatzker classification. Therefore, this study aims to develop a deep learning model for (1) detection of tibial plateau fractures and (2) classification according to the Schatzker classification. A multicenter approach was performed for the collection of radiographs of patients with tibia plateau fractures. Both anteroposterior and lateral images were uploaded into an annotation software and manually labelled and annotated. The dataset was balanced for optimizing model development and split into a training set and a test set. We trained two convolutional neural networks (GoogleNet and ResNet) for the detection and classification of tibia plateau fractures following the Schatzker classification. A total of 1506 knee radiographs from 753 patients, including 368 tibial plateau fractures and 385 healthy knees, were used to create the algorithm. The GoogleNet algorithm demonstrated high sensitivity (92.7%) but intermediate accuracy (70.4%) and positive predictive value (64.4%) in detecting tibial plateau fractures, indicating reliable detection of fractured cases. It exhibited limited success in accurately classifying fractures according to the Schatzker system, achieving an accuracy of only 34.6% and a sensitivity of 32.1%. This study shows that detection of tibial plateau fractures is a task that a DL algorithm can grasp; further refinement is necessary to enhance their accuracy in fracture classification. Computer vision models might improve using different classification systems, as the current Schatzker classification suffers from a low interobserver agreement on conventional radiographs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
south发布了新的文献求助10
刚刚
2秒前
5秒前
6秒前
Owen应助qwer0802采纳,获得10
7秒前
uf欧发布了新的文献求助10
7秒前
花陵发布了新的文献求助10
8秒前
在水一方应助cj1223采纳,获得10
8秒前
啧啧啧啧发布了新的文献求助10
8秒前
stk完成签到,获得积分10
8秒前
9秒前
肚子圆圆的完成签到 ,获得积分10
9秒前
south完成签到,获得积分10
10秒前
11秒前
Zzzzzzzzzzz发布了新的文献求助20
12秒前
深情安青应助WWW采纳,获得10
13秒前
Minkslion完成签到 ,获得积分10
14秒前
orixero应助您的慈父采纳,获得10
14秒前
zzzq发布了新的文献求助10
14秒前
是呀完成签到 ,获得积分10
14秒前
adam完成签到,获得积分10
15秒前
15秒前
bkagyin应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得30
17秒前
17秒前
liu完成签到,获得积分10
17秒前
17秒前
Owen应助瘦子爱吃肥肉采纳,获得10
18秒前
Cyan发布了新的文献求助10
21秒前
zzzq完成签到,获得积分10
23秒前
充电宝应助自行者采纳,获得10
26秒前
26秒前
脑洞疼应助不安夜雪采纳,获得10
26秒前
xiaozheng完成签到,获得积分10
27秒前
27秒前
崔小熊完成签到,获得积分10
28秒前
lala发布了新的文献求助10
28秒前
搜集达人应助邓代容采纳,获得10
31秒前
Jasper应助罖亽采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540799
求助须知:如何正确求助?哪些是违规求助? 3118078
关于积分的说明 9333737
捐赠科研通 2815905
什么是DOI,文献DOI怎么找? 1547969
邀请新用户注册赠送积分活动 721218
科研通“疑难数据库(出版商)”最低求助积分说明 712597