材料科学
电解质
电介质
阴极
快离子导体
复合数
锂(药物)
聚合物
化学工程
极化(电化学)
电极
复合材料
光电子学
物理化学
化学
工程类
内分泌学
医学
作者
Guanyou Xiao,Ke Yang,Yong Qiu,Peiran Shi,Guiming Zhong,Xufei An,Yuetao Ma,Likun Chen,Shaoke Guo,Jinshuo Mi,Zhuo Han,Tingzheng Hou,Yan Hao,Yun Tian,Xu Zhang,Yidan Cao,Ming Liu,Zhen Zhou,Yan‐Bing He
标识
DOI:10.1002/adma.202415411
摘要
Abstract The poor structural stability of polymer electrolytes and sluggish ion transport kinetics of interfaces with cathode limit the fundamental performance improvements of polymer all‐solid‐state lithium metal batteries under high voltages. Herein, it is revealed that by introducing dielectric BaTiO 3 in an in‐situ polymerized composite solid‐state electrolyte, the generated interaction between the ether group of polymer electrolyte and dielectric material could effectively regulate the lithium‐ion (Li + ) coordination structure to achieve an oxidative potential higher than 5.2 V. The dielectric BaTiO 3 with spontaneous polarization also weakens the space charge layer effect between the cathode and electrolyte, facilitating fast Li + transport kinetics across the cathode/electrolyte interfaces. The all‐solid‐state LiNi 0.8 Co 0.1 Mn 0.1 O 2 /Li batteries with the dielectric composite solid‐state electrolyte exhibit an ultra‐long cycling life of 1800 and 1300 cycles at room temperature under high cut‐off voltages of 4.6 and 4.7 V, respectively. This work highlights the critical role of dielectric materials in high‐performance solid‐state electrolytes and provides a promising strategy to realize high‐voltage long‐life all‐solid‐state lithium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI