Position Auctions with Endogenous Product Information: Why Live-Streaming Advertising Is Thriving

兴旺的 广告 共同价值拍卖 职位(财务) 产品(数学) 业务 在线广告 计算机科学 营销 经济 微观经济学 互联网 数学 万维网 社会科学 几何学 财务 社会学
作者
Ying‐Ju Chen,Guillermo Gallego,Pin Gao,Yang Li
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:4
标识
DOI:10.1287/mnsc.2021.01299
摘要

Live-streaming advertising in e-commerce is soaring. Both Amazon and Alibaba have employed this novel marketing model to engage consumers by sequentially exhibiting different products through live-streaming videos. In this paper, we adopt a mechanism design framework to model live-streaming e-commerce as a position auction with endogenous provision of product information. We prove that finding the mechanism that simultaneously optimizes position allocation and information provision is NP-hard. Thus, we develop several approximation algorithms. Building on the connection to the order selection problem, our analysis establishes that heuristics relying solely on product information provision can achieve up to 66.9% of the optimal revenue in the worst case. In contrast, heuristics exploiting position allocation alone may result in arbitrarily large revenue losses. We attribute the efficacy of product information provision to its enhancement of the value of ad spots in position auctions. Our findings suggest that advertising that focuses on differentiating product information—as in live-streaming e-commerce—is more lucrative than conventional position-based sponsored search. This managerial insight remains valid when accommodating multiproduct purchases with dependency or accounting for random consumer attention spans. This paper was accepted by Omar Besbes, revenue management and market analytics. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72201234, 72192805], the Hong Kong Research Grants Council [Grants 16211619, 16502219, 16212821, 16501722, C6032-21G], and the Guangdong Provincial Key Laboratory of Mathematical Foundations for Artificial Intelligence [Grant 2023B1212010001]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2021.01299 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
连鹰发布了新的文献求助10
1秒前
今后应助淡然的蓝天采纳,获得30
2秒前
4秒前
zzq发布了新的文献求助10
5秒前
Zz完成签到,获得积分10
7秒前
9秒前
yaoll发布了新的文献求助10
10秒前
连鹰完成签到,获得积分10
12秒前
xxfsx应助林风采纳,获得10
13秒前
14秒前
香蕉觅云应助敏家采纳,获得10
14秒前
师大保罗发布了新的文献求助10
15秒前
king_creole完成签到,获得积分10
15秒前
希望天下0贩的0应助辛巴采纳,获得10
15秒前
鲁姗完成签到,获得积分10
17秒前
wanci应助TiAmo采纳,获得10
17秒前
18秒前
18秒前
苏梗完成签到 ,获得积分10
19秒前
喵酱完成签到 ,获得积分10
21秒前
轻松傲薇发布了新的文献求助10
21秒前
TristeOwen发布了新的文献求助20
21秒前
vizi应助cc采纳,获得10
23秒前
24秒前
钟钟钟发布了新的文献求助20
24秒前
yaoll完成签到,获得积分10
25秒前
26秒前
LIU完成签到,获得积分10
28秒前
29秒前
周芷卉完成签到 ,获得积分10
31秒前
31秒前
pancake发布了新的文献求助10
31秒前
31秒前
玥月完成签到,获得积分10
32秒前
Owen应助Li采纳,获得10
35秒前
ding应助zzq采纳,获得10
35秒前
王晓凡完成签到,获得积分20
36秒前
板栗发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373831
求助须知:如何正确求助?哪些是违规求助? 4499875
关于积分的说明 14007415
捐赠科研通 4406786
什么是DOI,文献DOI怎么找? 2420717
邀请新用户注册赠送积分活动 1413451
关于科研通互助平台的介绍 1390059