清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Self-supervised U-transformer network with mask reconstruction for metal artifact reduction

计算机科学 人工智能 模式识别(心理学) 概化理论 工件(错误) 计算机视觉 深度学习 数学 统计
作者
Fanning Kong,Zaifeng Shi,Huaisheng Cao,Yudong Hao,Qingjie Cao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adbaae
摘要

Abstract Objective. Metal artifacts severely damaged human tissue information from the computed tomography (CT) image, posing significant challenges to disease diagnosis. Deep learning (DL) has been widely explored for the metal artifact reduction (MAR) task. Nevertheless, paired metal artifact CT datasets suitable for training do not exist in reality. Although the synthetic CT image dataset provides additional training data, the trained networks still generalize poorly to real metal artifact data.
Approach. A self-supervised U-shaped Transformer network (SUTransNet) is proposed to focus on model generalizability enhancement in MAR tasks. This framework consists of a self-supervised mask reconstruction pre-text task and a down-stream task. In the pre-text task, the CT images are randomly corrupted by masks. They are recovered with themselves as the label, aiming at acquiring the artifacts and tissue structure of the actual physical situation. Down-stream task fine-tunes MAR target through labeled images. Utilizing the multi-layer long-range feature extraction capabilities of the Transformer efficiently captures features of metal artifacts. The incorporation of the MAR bottleneck allows for the distinction of metal artifact features through cross-channel self-attention.
Main result. Experiments demonstrate that the framework maintains strong generalization ability in the MAR task, effectively preserving tissue details while suppressing metal artifacts. The results achieved a peak signal-to-noise ratio (PSNR) of 43.86 dB and a structural similarity index (SSIM) of 0.9863 while ensuring the efficiency of the model inference. In addition, the Dice coefficient and Mean Intersection over Union (MIoU) are improved by 11.70% and 9.51% in the segmentation of the MAR image, respectively.
Significance. The combination of unlabeled real-artifact CT images and labeled synthetic-artifact CT images facilitates a self-supervised learning process that positively contributes to model generalizability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HMR完成签到 ,获得积分10
18秒前
25秒前
29秒前
John完成签到,获得积分10
37秒前
40秒前
jfc完成签到 ,获得积分10
41秒前
56秒前
1分钟前
马登发布了新的文献求助10
1分钟前
lilaccalla完成签到 ,获得积分10
1分钟前
马登完成签到,获得积分10
1分钟前
1分钟前
年轻千愁完成签到 ,获得积分10
1分钟前
1分钟前
研友_ngqoE8完成签到,获得积分10
1分钟前
懒狗羊完成签到,获得积分10
1分钟前
1分钟前
1分钟前
652183758完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
程程发布了新的文献求助10
2分钟前
z123123完成签到,获得积分10
2分钟前
2分钟前
digger2023完成签到 ,获得积分10
2分钟前
煜琪完成签到 ,获得积分10
3分钟前
sysi完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
谭凯文完成签到 ,获得积分10
3分钟前
zhdjj完成签到 ,获得积分10
3分钟前
k sir发布了新的文献求助10
3分钟前
zzgpku完成签到,获得积分0
3分钟前
3分钟前
3分钟前
胡可完成签到 ,获得积分10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131421
关于积分的说明 9391049
捐赠科研通 2831122
什么是DOI,文献DOI怎么找? 1556378
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890