发光
光子上转换
猝灭(荧光)
材料科学
兴奋剂
镧系元素
激发
能量转移
光电子学
退火(玻璃)
热的
分析化学(期刊)
物理化学
化学物理
离子
化学
热力学
荧光
光学
物理
有机化学
复合材料
量子力学
作者
Yang Wei,Yue Pan,En‐Long Zhou,Ze Yuan,Hao Song,Yilin Wang,Jie Zhou,Jiahui Rui,Mengjiao Xu,Lixin Ning,Zhanning Liu,Hongyu Wang,Xiaoji Xie,Xiaobin Tang,Haiquan Su,Xianran Xing,Ling Huang
标识
DOI:10.1002/anie.202303482
摘要
Although large amount of effort has been invested in combating thermal quenching that severely degrades the performance of luminescent materials particularly at high temperatures, not much affirmative progress has been realized. Herein, we demonstrate that the Frenkel defect formed via controlled annealing of Sc2 (WO4 )3 :Ln (Ln=Yb, Er, Eu, Tb, Sm), can work as energy reservoir and back-transfer the stored excitation energy to Ln3+ upon heating. Therefore, except routine anti-thermal quenching, thermally enhanced 415-fold downshifting and 405-fold upconversion luminescence are even obtained in Sc2 (WO4 )3 :Yb/Er, which has set a record of both the Yb3+ -Er3+ energy transfer efficiency (>85 %) and the working temperature at 500 and 1073 K, respectively. Moreover, this design strategy is extendable to other hosts possessing Frenkel defect, and modulation of which directly determines whether enhanced or decreased luminescence can be obtained. This discovery has paved new avenues to reliable generation of high-temperature luminescence.
科研通智能强力驱动
Strongly Powered by AbleSci AI