Deep image captioning: A review of methods, trends and future challenges

隐藏字幕 计算机科学 领域(数学) 工作流程 代表(政治) 人工智能 特征(语言学) 编码(内存) 透视图(图形) 自然语言处理 可视化 图像(数学) 语言学 政治 数据库 哲学 数学 法学 纯数学 政治学
作者
Liming Xu,Quan Tang,Jiancheng Lv,Bo Zheng,Xianhua Zeng,Weisheng Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:546: 126287-126287 被引量:2
标识
DOI:10.1016/j.neucom.2023.126287
摘要

Image captioning, also called report generation in medical field, aims to describe visual content of images in human language, which requires to model semantic relationship between visual and textual elements and generate corresponding descriptions that conform to human language cognition. Image captioning is significant for promoting human–computer interaction in all fields and particularly, for computer-aided diagnosis in medical field. Currently, with the rapid development of deep learning technologies, image caption has attracted increasing attention of many researchers in artificial intelligence-related fields. To this end, this study attempts to provide readers with systematic and comprehensive research about different deep image captioning methods in natural and medical fields. We first introduce workflow of image captioning from perspective of simulating human process of describing images, including seeing, focusing and telling, which is respectively behavioralized into feature representation, visual encoding and language generation. Within it, we present common-used feature representation, visual encoding and language generation models. Then, we review datasets, evaluations and basic losses used in image captioning, and summarize typical caption methods which are generally divided into that with or without using reinforcement learning. Besides, we describe advantages and disadvantages of existing methods, and conclusion and challenges are finally presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Vicky0503采纳,获得10
刚刚
风中晓绿完成签到,获得积分20
刚刚
感动归尘发布了新的文献求助10
1秒前
Ganlou应助Imstemcell采纳,获得10
1秒前
泡芙发布了新的文献求助10
1秒前
沁秋完成签到,获得积分10
1秒前
打打应助喝粥阿旺采纳,获得10
1秒前
滕侑林完成签到,获得积分10
2秒前
小北发布了新的文献求助10
3秒前
wddfz完成签到,获得积分10
3秒前
Ganlou应助爱学习的小马采纳,获得10
4秒前
4秒前
万能图书馆应助Luke采纳,获得10
4秒前
5秒前
5秒前
Molly完成签到 ,获得积分10
5秒前
海子完成签到,获得积分10
5秒前
5秒前
司空豁发布了新的文献求助10
5秒前
忧郁凌波发布了新的文献求助10
5秒前
科研通AI2S应助乐观的幼珊采纳,获得10
6秒前
6秒前
6秒前
李健应助美满的以亦采纳,获得10
7秒前
Young完成签到,获得积分10
8秒前
wxj发布了新的文献求助10
8秒前
活力听兰发布了新的文献求助10
8秒前
kkkk完成签到 ,获得积分10
8秒前
8秒前
周小满完成签到,获得积分10
8秒前
10秒前
lalala应助1234采纳,获得10
10秒前
虚幻海冬发布了新的文献求助10
11秒前
科研通AI2S应助gxz采纳,获得10
11秒前
饱满绝施应助热情的幻丝采纳,获得10
11秒前
无糖发布了新的文献求助10
12秒前
DU发布了新的文献求助10
12秒前
研友_Z34DG8完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307880
求助须知:如何正确求助?哪些是违规求助? 2941451
关于积分的说明 8503412
捐赠科研通 2615951
什么是DOI,文献DOI怎么找? 1429290
科研通“疑难数据库(出版商)”最低求助积分说明 663712
邀请新用户注册赠送积分活动 648671