免疫疗法
嵌合抗原受体
肿瘤微环境
癌症研究
基因组编辑
胶质母细胞瘤
药物输送
脑瘤
医学
效应器
免疫学
免疫系统
清脆的
生物
肿瘤细胞
基因
化学
病理
生物化学
有机化学
作者
Yun Chang,Xuechao Cai,Ramizah Syahirah,Yuxing Yao,Yang Xu,Gyuhyung Jin,Vijesh J. Bhute,Sandra Torregrosa‐Allen,Bennett D. Elzey,You‐Yeon Won,Qing Deng,Xiaojun Lian,Xiaoguang Wang,Omolola Eniola‐Adefeso,Xiaoping Bao
标识
DOI:10.1038/s41467-023-37872-4
摘要
Abstract Glioblastoma (GBM) is one of the most aggressive and lethal solid tumors in human. While efficacious therapeutics, such as emerging chimeric antigen receptor (CAR)-T cells and chemotherapeutics, have been developed to treat various cancers, their effectiveness in GBM treatment has been hindered largely by the blood-brain barrier and blood-brain-tumor barriers. Human neutrophils effectively cross physiological barriers and display effector immunity against pathogens but the short lifespan and resistance to genome editing of primary neutrophils have limited their broad application in immunotherapy. Here we genetically engineer human pluripotent stem cells with CRISPR/Cas9-mediated gene knock-in to express various anti-GBM CAR constructs with T-specific CD3ζ or neutrophil-specific γ-signaling domains. CAR-neutrophils with the best anti-tumor activity are produced to specifically and noninvasively deliver and release tumor microenvironment-responsive nanodrugs to target GBM without the need to induce additional inflammation at the tumor sites. This combinatory chemo-immunotherapy exhibits superior and specific anti-GBM activities, reduces off-target drug delivery and prolongs lifespan in female tumor-bearing mice. Together, this biomimetic CAR-neutrophil drug delivery system is a safe, potent and versatile platform for treating GBM and possibly other devastating diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI