Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends

计算机科学 图像分割 人工智能 分割 过程(计算) 医学影像学 图像处理 基于分割的对象分类 图像(数学) 机器学习 尺度空间分割 计算机视觉 操作系统
作者
Imran Qureshi,Junhua Yan,Qaisar Abbas,Kashif Shaheed,Awais Bin Riaz,Abdul Wahid,Muhammad Waseem Jan Khan,Piotr Szczuko
出处
期刊:Information Fusion [Elsevier]
卷期号:90: 316-352 被引量:230
标识
DOI:10.1016/j.inffus.2022.09.031
摘要

Semantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors present perspectives on the development of an architectural, and operational mechanism of each machine learning-based semantic segmentation approach with merits and demerits. In this regard, researchers have proposed different Semseg methods and examined their performance in a variety of applications such as medical image analysis (e.g., medical image classification and segmentation). A review of recent advances in Semseg techniques are presented in this paper by applying computational image processing and machine learning methods. This article is further presented a comprehensive investigation on how different architectures are helpful for medical image segmentation. Finally, advantages, open challenges, and possible future directions are elaborated in the discussion part, beneficial to the research community to understand the significance of the available medical imaging segmentation technology based on Semseg and thus deliver robust segmentation solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小二郎应助大迷糊采纳,获得10
1秒前
1秒前
大模型应助中森菜龙采纳,获得10
1秒前
ChatGPT发布了新的文献求助10
2秒前
烟酒僧完成签到,获得积分10
2秒前
2秒前
mio发布了新的文献求助10
3秒前
3秒前
3秒前
CipherSage应助风中擎采纳,获得10
3秒前
zzz发布了新的文献求助10
4秒前
4秒前
okisseven7完成签到,获得积分10
4秒前
程佑贵完成签到,获得积分20
5秒前
陶醉鞅发布了新的文献求助10
5秒前
6秒前
曾维嘉完成签到,获得积分10
6秒前
6秒前
7秒前
Cheney发布了新的文献求助10
7秒前
7秒前
7秒前
香橙完成签到,获得积分10
8秒前
凶狠的小兔子完成签到 ,获得积分10
8秒前
Hello应助EMM采纳,获得10
8秒前
牧听莲完成签到,获得积分10
9秒前
沈姐姐完成签到,获得积分20
9秒前
程佑贵发布了新的文献求助10
9秒前
9秒前
10秒前
dandan完成签到,获得积分10
10秒前
CY03完成签到,获得积分10
10秒前
活泼的寄风完成签到,获得积分10
10秒前
10秒前
123456qqqq完成签到,获得积分10
11秒前
11秒前
oudian完成签到,获得积分10
11秒前
ljhya完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406