已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends

计算机科学 图像分割 人工智能 分割 过程(计算) 医学影像学 图像处理 基于分割的对象分类 图像(数学) 机器学习 尺度空间分割 计算机视觉 操作系统
作者
Imran Qureshi,Junhua Yan,Qaisar Abbas,Kashif Shaheed,Awais Bin Riaz,Abdul Wahid,Muhammad Waseem Jan Khan,Piotr Szczuko
出处
期刊:Information Fusion [Elsevier]
卷期号:90: 316-352 被引量:240
标识
DOI:10.1016/j.inffus.2022.09.031
摘要

Semantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors present perspectives on the development of an architectural, and operational mechanism of each machine learning-based semantic segmentation approach with merits and demerits. In this regard, researchers have proposed different Semseg methods and examined their performance in a variety of applications such as medical image analysis (e.g., medical image classification and segmentation). A review of recent advances in Semseg techniques are presented in this paper by applying computational image processing and machine learning methods. This article is further presented a comprehensive investigation on how different architectures are helpful for medical image segmentation. Finally, advantages, open challenges, and possible future directions are elaborated in the discussion part, beneficial to the research community to understand the significance of the available medical imaging segmentation technology based on Semseg and thus deliver robust segmentation solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助zuzu采纳,获得10
1秒前
1秒前
2秒前
无情的冰香完成签到 ,获得积分10
4秒前
朱一龙完成签到,获得积分10
4秒前
9秒前
Criminology34举报ddrose求助涉嫌违规
9秒前
阿朱完成签到 ,获得积分10
10秒前
汉堡包应助孔夫子采纳,获得10
11秒前
天天快乐应助庾稀采纳,获得10
11秒前
chengxiping发布了新的文献求助10
11秒前
11秒前
yangyangyang完成签到,获得积分10
12秒前
13秒前
JohanXu完成签到,获得积分10
14秒前
深情安青应助wd采纳,获得10
15秒前
17秒前
yyy发布了新的文献求助10
17秒前
18秒前
rainbow完成签到,获得积分10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得80
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
21秒前
DDL发布了新的文献求助10
22秒前
倾抚发布了新的文献求助10
23秒前
郴欧尼发布了新的文献求助10
23秒前
绾妤完成签到 ,获得积分0
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040