Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends

计算机科学 图像分割 人工智能 分割 过程(计算) 医学影像学 图像处理 基于分割的对象分类 图像(数学) 机器学习 尺度空间分割 计算机视觉 操作系统
作者
Imran Qureshi,Junhua Yan,Qaisar Abbas,Kashif Shaheed,Awais Bin Riaz,Abdul Wahid,Muhammad Waseem Jan Khan,Piotr Szczuko
出处
期刊:Information Fusion [Elsevier]
卷期号:90: 316-352 被引量:123
标识
DOI:10.1016/j.inffus.2022.09.031
摘要

Semantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors present perspectives on the development of an architectural, and operational mechanism of each machine learning-based semantic segmentation approach with merits and demerits. In this regard, researchers have proposed different Semseg methods and examined their performance in a variety of applications such as medical image analysis (e.g., medical image classification and segmentation). A review of recent advances in Semseg techniques are presented in this paper by applying computational image processing and machine learning methods. This article is further presented a comprehensive investigation on how different architectures are helpful for medical image segmentation. Finally, advantages, open challenges, and possible future directions are elaborated in the discussion part, beneficial to the research community to understand the significance of the available medical imaging segmentation technology based on Semseg and thus deliver robust segmentation solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卢健辉发布了新的文献求助10
刚刚
1秒前
cookie完成签到,获得积分10
1秒前
JMZ完成签到 ,获得积分10
3秒前
英姑应助星星采纳,获得10
3秒前
spurs17发布了新的文献求助30
4秒前
LH完成签到,获得积分10
4秒前
CodeCraft应助Island采纳,获得10
5秒前
annis完成签到,获得积分10
5秒前
小黄应助asir_xw采纳,获得10
6秒前
认真的rain完成签到,获得积分10
6秒前
糊涂的小伙完成签到,获得积分10
7秒前
芒果豆豆完成签到,获得积分10
7秒前
赎罪完成签到 ,获得积分10
8秒前
卢健辉完成签到,获得积分10
8秒前
8秒前
9秒前
负责的中道完成签到,获得积分10
10秒前
dyh6802发布了新的文献求助10
10秒前
儒雅八宝粥完成签到 ,获得积分10
10秒前
深情安青应助科研小菜鸟采纳,获得10
11秒前
姜灭绝完成签到,获得积分10
11秒前
三七二一完成签到,获得积分10
11秒前
12秒前
大方的寒烟完成签到,获得积分10
13秒前
15秒前
橘寄完成签到,获得积分10
15秒前
请叫我风吹麦浪应助mito采纳,获得10
16秒前
Smallhei完成签到,获得积分10
16秒前
17秒前
111111111完成签到,获得积分20
17秒前
18秒前
阿牛完成签到,获得积分20
19秒前
20秒前
111111111发布了新的文献求助10
21秒前
21秒前
21秒前
龙华之士完成签到,获得积分10
22秒前
机智的青槐完成签到 ,获得积分10
23秒前
阿牛发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808