Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends

计算机科学 图像分割 人工智能 分割 过程(计算) 医学影像学 图像处理 基于分割的对象分类 图像(数学) 机器学习 尺度空间分割 计算机视觉 操作系统
作者
Imran Qureshi,Junhua Yan,Qaisar Abbas,Kashif Shaheed,Awais Bin Riaz,Abdul Wahid,Muhammad Waseem Jan Khan,Piotr Szczuko
出处
期刊:Information Fusion [Elsevier BV]
卷期号:90: 316-352 被引量:123
标识
DOI:10.1016/j.inffus.2022.09.031
摘要

Semantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors present perspectives on the development of an architectural, and operational mechanism of each machine learning-based semantic segmentation approach with merits and demerits. In this regard, researchers have proposed different Semseg methods and examined their performance in a variety of applications such as medical image analysis (e.g., medical image classification and segmentation). A review of recent advances in Semseg techniques are presented in this paper by applying computational image processing and machine learning methods. This article is further presented a comprehensive investigation on how different architectures are helpful for medical image segmentation. Finally, advantages, open challenges, and possible future directions are elaborated in the discussion part, beneficial to the research community to understand the significance of the available medical imaging segmentation technology based on Semseg and thus deliver robust segmentation solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
很多奶油完成签到 ,获得积分10
2秒前
水濑心源完成签到,获得积分10
2秒前
725发布了新的文献求助10
4秒前
乐乐应助冷酷的猎豹采纳,获得10
4秒前
5秒前
RosyBai发布了新的文献求助10
5秒前
6秒前
彳亍完成签到,获得积分10
6秒前
糖葫芦发布了新的文献求助10
8秒前
8秒前
完美世界应助向东东采纳,获得10
9秒前
张张发布了新的文献求助10
10秒前
ataybabdallah完成签到,获得积分10
10秒前
重要的酸奶完成签到,获得积分10
12秒前
13秒前
Yuan88完成签到,获得积分10
13秒前
14秒前
zhouzhou完成签到 ,获得积分10
14秒前
敢敢完成签到,获得积分10
14秒前
完美世界应助动人的宫苴采纳,获得20
15秒前
Akim应助吴陈采纳,获得10
15秒前
725完成签到,获得积分10
17秒前
张张完成签到,获得积分10
18秒前
18秒前
zzz发布了新的文献求助10
18秒前
18秒前
logo发布了新的文献求助10
19秒前
19秒前
科研通AI5应助如许采纳,获得20
20秒前
21秒前
魁梧的元蝶完成签到 ,获得积分10
23秒前
23秒前
乘风的法袍完成签到,获得积分10
24秒前
辰景发布了新的文献求助10
24秒前
一一发布了新的文献求助10
25秒前
26秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388