Machine-learning-enabled intelligence computing for crisis management in small and medium-sized enterprises (SMEs)

计算机科学 预警系统 人工智能 机器学习 人工神经网络 金融危机 反向传播 逻辑回归 工作(物理) 财务 数据挖掘 业务 经济 工程类 宏观经济学 机械工程 电信
作者
Zichao Zhao,Dexuan Li,Wensheng Dai
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:191: 122492-122492 被引量:15
标识
DOI:10.1016/j.techfore.2023.122492
摘要

This work aims to improve the accuracy of financial crisis early warnings for small and medium-sized enterprises (SMEs) to help them uncover hidden dangers during the latent period of a crisis and to respond effectively. First, this work analyses the development characteristics of SMEs, the crises they face, and a financial crisis early warning system. Then, a statistical method is used to determine which indicators are significant to implement the model for an early warning financial crisis to determine the index system. To do this, relevant machine learning (ML) algorithms are introduced to realize a corporate financial crisis management and early warning system (CFCM-EWS) using the stacking fusion method. The CFCM-EWS can mine relationships among the data and analyze nonlinear and difficult-to-explain problems. A comparison of classical financial early warning models (backpropagation neural network (BPNN) and logistic regression models) with the XGBoost model highlights the advantages of the XGBoost model. The model's discrimination results show that its prediction accuracy for special treatment and nonspecial treatment corporates is 85.8 % and 81.9 %, respectively. The logistic regression, XGBoost, and BPNN models are fused using the stacking method. ML provides a more practical prediction method with higher efficiency and accuracy than does traditional econometric models. The final fusion model outperforms the voting and averaging methods in prediction performance. The CFCM-EWS based on intelligent computing discussed here is of great value for SMEs to accurately predict financial crises and adopt timely countermeasures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gopher完成签到,获得积分10
8秒前
李白爱字由完成签到 ,获得积分10
9秒前
CQ完成签到 ,获得积分10
9秒前
英俊的铭应助纯真的凝海采纳,获得30
14秒前
蓝胖子发布了新的文献求助30
14秒前
刘丽梅完成签到 ,获得积分0
15秒前
16秒前
年轻的醉冬完成签到 ,获得积分10
17秒前
一孙发布了新的文献求助10
18秒前
李白爱字由关注了科研通微信公众号
23秒前
清风朗月发布了新的文献求助10
24秒前
科研通AI5应助fish采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
daisy_chen应助科研通管家采纳,获得10
26秒前
CipherSage应助科研通管家采纳,获得30
27秒前
siriuslee99发布了新的文献求助10
27秒前
李健应助科研通管家采纳,获得10
27秒前
土拨鼠发布了新的文献求助10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
28秒前
领导范儿应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得30
31秒前
调皮的冷亦完成签到,获得积分10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
31秒前
上官若男应助科研通管家采纳,获得10
31秒前
31秒前
Blue发布了新的文献求助10
32秒前
32秒前
33秒前
wu完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123582
求助须知:如何正确求助?哪些是违规求助? 4327953
关于积分的说明 13485988
捐赠科研通 4162311
什么是DOI,文献DOI怎么找? 2281331
邀请新用户注册赠送积分活动 1282783
关于科研通互助平台的介绍 1221876