Machine-learning-enabled intelligence computing for crisis management in small and medium-sized enterprises (SMEs)

计算机科学 预警系统 人工智能 机器学习 人工神经网络 金融危机 反向传播 逻辑回归 工作(物理) 财务 数据挖掘 业务 经济 工程类 机械工程 电信 宏观经济学
作者
Zichao Zhao,Dexuan Li,Wensheng Dai
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:191: 122492-122492 被引量:15
标识
DOI:10.1016/j.techfore.2023.122492
摘要

This work aims to improve the accuracy of financial crisis early warnings for small and medium-sized enterprises (SMEs) to help them uncover hidden dangers during the latent period of a crisis and to respond effectively. First, this work analyses the development characteristics of SMEs, the crises they face, and a financial crisis early warning system. Then, a statistical method is used to determine which indicators are significant to implement the model for an early warning financial crisis to determine the index system. To do this, relevant machine learning (ML) algorithms are introduced to realize a corporate financial crisis management and early warning system (CFCM-EWS) using the stacking fusion method. The CFCM-EWS can mine relationships among the data and analyze nonlinear and difficult-to-explain problems. A comparison of classical financial early warning models (backpropagation neural network (BPNN) and logistic regression models) with the XGBoost model highlights the advantages of the XGBoost model. The model's discrimination results show that its prediction accuracy for special treatment and nonspecial treatment corporates is 85.8 % and 81.9 %, respectively. The logistic regression, XGBoost, and BPNN models are fused using the stacking method. ML provides a more practical prediction method with higher efficiency and accuracy than does traditional econometric models. The final fusion model outperforms the voting and averaging methods in prediction performance. The CFCM-EWS based on intelligent computing discussed here is of great value for SMEs to accurately predict financial crises and adopt timely countermeasures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
琦铉完成签到,获得积分10
刚刚
1235456完成签到,获得积分20
刚刚
王丹丹发布了新的文献求助10
1秒前
麻辣橙子完成签到,获得积分10
2秒前
小杭76应助ajxtt采纳,获得10
2秒前
大桔子发布了新的文献求助10
2秒前
WoeL.Aug.11完成签到,获得积分10
2秒前
yuhongsun完成签到,获得积分10
2秒前
bamboo发布了新的文献求助10
3秒前
韶华若锦发布了新的文献求助10
3秒前
张子陌发布了新的文献求助10
4秒前
4秒前
乐观的海发布了新的文献求助10
4秒前
anfly发布了新的文献求助10
4秒前
5秒前
wwz应助lx840518采纳,获得20
5秒前
梁燕回发布了新的文献求助10
5秒前
张力航发布了新的文献求助10
5秒前
完美世界应助辞镜采纳,获得10
5秒前
LMH完成签到 ,获得积分10
5秒前
喵喵完成签到,获得积分10
6秒前
yuhongsun发布了新的文献求助10
6秒前
6秒前
chenqiumu应助科研通管家采纳,获得30
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得20
7秒前
慕青应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
chenqiumu应助科研通管家采纳,获得30
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
Lindsay应助科研通管家采纳,获得10
7秒前
Lindsay应助科研通管家采纳,获得10
8秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879