Automatic segmentation of prostate MRI based on 3D pyramid pooling Unet

棱锥(几何) 计算机科学 人工智能 联营 分割 模式识别(心理学) 编码器 特征(语言学) 特征提取 图像分割 计算机视觉 背景(考古学) 数学 几何学 古生物学 语言学 哲学 生物 操作系统
作者
Yuchun Li,Cong Lin,Yu Zhang,Shuyi Feng,Mengxing Huang,Zhiming Bai
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 906-921 被引量:4
标识
DOI:10.1002/mp.15895
摘要

Automatic segmentation of prostate magnetic resonance (MR) images is crucial for the diagnosis, evaluation, and prognosis of prostate diseases (including prostate cancer). In recent years, the mainstream segmentation method for the prostate has been converted to convolutional neural networks. However, owing to the complexity of the tissue structure in MR images and the limitations of existing methods in spatial context modeling, the segmentation performance should be improved further.In this study, we proposed a novel 3D pyramid pool Unet that benefits from the pyramid pooling structure embedded in the skip connection (SC) and the deep supervision (DS) in the up-sampling of the 3D Unet. The parallel SC of the conventional 3D Unet network causes low-resolution information to be sent to the feature map repeatedly, resulting in blurred image features. To overcome the shortcomings of the conventional 3D Unet, we merge each decoder layer with the feature map of the same scale as the encoder and the smaller scale feature map of the pyramid pooling encoder. This SC combines the low-level details and high-level semantics at two different levels of feature maps. In addition, pyramid pooling performs multifaceted feature extraction on each image behind the convolutional layer, and DS learns hierarchical representations from comprehensive aggregated feature maps, which can improve the accuracy of the task.Experiments on 3D prostate MR images of 78 patients demonstrated that our results were highly correlated with expert manual segmentation. The average relative volume difference and Dice similarity coefficient of the prostate volume area were 2.32% and 91.03%, respectively.Quantitative experiments demonstrate that, compared with other methods, the results of our method are highly consistent with the expert manual segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
称心乐枫完成签到,获得积分10
2秒前
2秒前
22发布了新的文献求助10
2秒前
berry发布了新的文献求助10
2秒前
kingmin应助毛慢慢采纳,获得10
3秒前
完美世界应助顺利鱼采纳,获得10
4秒前
搜集达人应助招财不肥采纳,获得10
5秒前
sweetbearm应助李秋静采纳,获得10
5秒前
Michael_li完成签到,获得积分10
5秒前
whs完成签到,获得积分10
7秒前
科研通AI5应助xlj采纳,获得10
8秒前
再干一杯发布了新的文献求助10
8秒前
9秒前
满意的天完成签到 ,获得积分10
9秒前
luoshiwen完成签到,获得积分10
9秒前
落寞的觅柔完成签到,获得积分10
11秒前
12秒前
LUNWENREQUEST发布了新的文献求助10
12秒前
13秒前
14秒前
123cxj完成签到,获得积分10
17秒前
CO2发布了新的文献求助10
17秒前
summer发布了新的文献求助10
17秒前
18秒前
Xx.发布了新的文献求助10
18秒前
大大关注了科研通微信公众号
18秒前
稚祎完成签到 ,获得积分10
18秒前
18秒前
CodeCraft应助东东采纳,获得10
19秒前
20秒前
叽里咕噜完成签到 ,获得积分10
21秒前
田様应助zccc采纳,获得10
22秒前
隐形的雁完成签到,获得积分10
22秒前
追寻的秋玲完成签到,获得积分10
23秒前
李繁蕊发布了新的文献求助10
23秒前
24秒前
舒心的紫雪完成签到 ,获得积分10
25秒前
25秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808