Automatic detection of A‐line in lung ultrasound images using deep learning and image processing

人工智能 计算机科学 计算机视觉 直线(几何图形) 图像处理 医学影像学 滤波器(信号处理) 模式识别(心理学) 图像(数学) 数学 几何学
作者
Wenyu Xing,Guannan Li,Chao He,Qiming Huang,Xulei Cui,Qingli Li,Wenfang Li,Jiangang Chen,Xiaojun Song
出处
期刊:Medical Physics [Wiley]
卷期号:50 (1): 330-343 被引量:11
标识
DOI:10.1002/mp.15908
摘要

Auxiliary diagnosis and monitoring of lung diseases based on lung ultrasound (LUS) images is important clinical research. A-line is one of the most common indicators of LUS that can offer support for the assessment of lung diseases. A traditional A-line detection method mainly relies on experienced clinicians, which is inefficient and cannot meet the needs of these areas with backward medical level. Therefore, how to realize the automatic detection of A-line in LUS image is important.In order to solve the disadvantages of traditional A-line detection methods, realize automatic and accurate detection, and provide theoretical support for clinical application, we proposed a novel A-line detection method for LUS images with different probe types in this paper.First, the improved Faster R-CNN model with a selection strategy of localization box was designed to accurately locate the pleural line. Then, the LUS image below the pleural line was segmented for independent analysis excluding the influence of other similar structures. Next, image-processing methods based on total variation, matched filter, and gray difference were applied to achieve the automatic A-line detection. Finally, the "depth" index was designed to verify the accuracy by judging whether the automatic measurement results belong to corresponding manual results (±5%). In experiments, 3000 convex array LUS images were used for training and validating the improved pleural line localization model by five-fold cross validation. 850 convex array LUS images and 1080 linear array LUS images were used for testing the trained pleural line localization model and the proposed image-processing-based A-line detection method. The accuracy analysis, error statistics, and Harsdorff distance were employed to evaluate the experimental results.After 100 epochs, the mean loss value of training and validation set of improved Faster R-CNN model reached 0.6540 and 0.7882, with the validation accuracy of 98.70%. The trained pleural line localization model was applied in the testing set of convex and linear probes and reached the accuracy of 97.88% and 97.11%, respectively, which were 3.83% and 8.70% higher than the original Faster R-CNN model. The accuracy, sensitivity, and specificity of A-line detection reached 95.41%, 0.9244%, 0.9875%, and 94.63%, 0.9230%, and 0.9766% for convex and linear probes, respectively. Compared to the experienced clinicians' results, the mean value and p value of depth error were 1.5342 ± 1.2097 and 0.9021, respectively, and the Harsdorff distance was 5.7305 ± 1.8311. In addition, the accumulated accuracy of the two-stage experiment (pleural line localization and A-line detection) was calculated as the final accuracy of the whole A-line detection system. They were 93.39% and 91.90% for convex and linear probes, respectively, which were higher than these previous methods.The proposed method combining image processing and deep learning can automatically and accurately detect A-line in LUS images with different probe types, which has important application value for clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
greenPASS666发布了新的文献求助10
1秒前
xuanxuan发布了新的文献求助10
1秒前
zfy发布了新的文献求助10
3秒前
3秒前
3秒前
Maor完成签到,获得积分10
3秒前
白菜发布了新的文献求助10
4秒前
4秒前
5秒前
妮妮完成签到 ,获得积分10
7秒前
7秒前
傲娇的凡旋应助spurs17采纳,获得10
7秒前
长情若魔完成签到,获得积分10
9秒前
XM完成签到,获得积分10
9秒前
9秒前
LQW发布了新的文献求助30
9秒前
大个应助Rrr采纳,获得10
9秒前
10秒前
11秒前
11秒前
13秒前
zfy完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
15秒前
w17638619025完成签到 ,获得积分20
16秒前
撒上咖啡应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
17秒前
菠萝吹雪应助科研通管家采纳,获得30
17秒前
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
17秒前
西内!卡Q因完成签到,获得积分10
18秒前
我是125应助www采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808