微泡
小胶质细胞
外体
信号转导
TLR2型
间充质干细胞
细胞生物学
促炎细胞因子
医学
炎症
生物
免疫学
小RNA
TLR4型
生物化学
基因
作者
Xu Gao,Long-fei Gao,Yanan Zhang,Xiangqing Kong,Shu Jia,Chunyang Meng
标识
DOI:10.1016/j.intimp.2022.109505
摘要
Mesenchymal stem cells (MSCs)-derived exosomes have shown promise as a cell-free therapeutic strategy for neuropathic pain. This study was conducted to explore the potential mechanisms underlying the analgesic effects of MSC-derived exosomes in treating neuropathic pain.Human umbilical cord MSCs (huc-MSCs)-derived exosomes were isolated and identified. BV-2 microglia were stimulated with lipopolysaccharide (LPS) in the presence or absence of exosomes. Differentially expressed proteins were identified by tandem mass tag (TMT)-based proteomic analysis. The analgesic effects of huc-MSCs-derived exosomes were evaluated in a rat model of chronic constriction injury (CCI). The underlying mechanism was investigated by flow cytometry, RT-qPCR, Western blotting, immunofluorescent staining, and small interfering RNA transfection.In vitro, huc-MSCs-derived exosomes suppressed LPS-induced microglial activation and inhibited activation of the TLR2/MyD88/NF-κB signaling pathway. Based on the proteomic analysis, Rsad2 was identified and confirmed to be down-regulated by huc-MSCs-derived exosomes. Importantly, knockdown of Rsad2 also inhibited microglial activation and restrained activation of the TLR2/MyD88/NF-κB signaling pathway. In vivo, intrathecal injection of exosomes ameliorated CCI-induced mechanical allodynia, down-regulated Rsad2 expression and restrained TLR2/MyD88/NF-κB signaling activation in the spinal microglia.Huc-MSCs-derived exosomes exerted analgesic effects on neuropathic pain by inhibiting activation of the TLR2/MyD88/NF-κB signaling pathway in the spinal microglia. The mechanism underlying these antinociceptive effects involved exosome-mediated interference with Rsad2 expression, thereby inhibiting microglial activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI