Field-driven data processing paradigm for multi-information additive manufacturing

计算机科学 稳健性(进化) 灵活性(工程) 信息模型 财产(哲学) 信息集成 领域(数学) 过程(计算) 解析 分布式计算 数据挖掘 工业工程 人工智能 工程类 数据库 认识论 操作系统 统计 基因 哲学 化学 生物化学 纯数学 数学
作者
Senlin Wang,Lichao Zhang,Chao Cai,Mingkai Tang,Junchi He,Lin Qin,Yusheng Shi
出处
期刊:Additive manufacturing [Elsevier]
卷期号:61: 103352-103352 被引量:6
标识
DOI:10.1016/j.addma.2022.103352
摘要

Multifunctional components with various information such as material, structure, process, and performance have become viable and accessible to the industry due to the rapid growth of additive manufacturing (AM) technology from contour modeling to functional modeling. However, multi-information additive manufacturing requirements far outpaced the processing capabilities of current data processing systems to model and interpret multi-information digital models. This paper proposes a field-driven processing paradigm with the ability to describe and parse complex, multi-information distributions. The robustness and flexibility of field-driven design are fully exploited by uniformly converting data including common AM models such as meshes, function formulas, and point clouds into control field representations and setting reasonable control-property mapping rules. The complexity of multi-information modeling is significantly reduced via a combined strategy of control fields and mapping relationships. A complete multi-information model only consists of initial data related to desired properties and corresponding mapping rules. Compared with the voxel method, the amount of data is reduced by more than 80%. The multi-information model is discretely parsed in different dimensions according to manufacturing requirements to efficiently and accurately generate property data for industrial manufacturing. Two representative multi-information demonstrators incorporating material-structure dual gradients and structure-process integration are designed and printed while 3 AM techniques are employed to validate the utility of this paradigm. The paradigm is anticipated to open up an efficient route for the realization of material-structure-process-property integrated AM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soso完成签到 ,获得积分10
1秒前
1秒前
狗狗应助跳跃乘风采纳,获得20
2秒前
小油条应助Amai采纳,获得20
2秒前
科研通AI5应助clear采纳,获得10
2秒前
韩金龙完成签到,获得积分10
3秒前
科研通AI2S应助LiShin采纳,获得10
3秒前
希望天下0贩的0应助尘雾采纳,获得10
5秒前
5秒前
12345完成签到,获得积分10
6秒前
Lialilico完成签到,获得积分10
7秒前
Akim应助我必做出来采纳,获得50
7秒前
8秒前
随机起的名完成签到,获得积分10
8秒前
Owen应助努力的小狗屁采纳,获得10
9秒前
9秒前
vuig完成签到 ,获得积分10
9秒前
哈哈哈的一笑完成签到,获得积分10
9秒前
9秒前
Emma完成签到,获得积分10
9秒前
10秒前
10秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
10秒前
huanger完成签到,获得积分10
10秒前
Tayzon完成签到 ,获得积分10
10秒前
我测你码完成签到,获得积分10
10秒前
超级宇宙二踢脚完成签到,获得积分10
11秒前
11秒前
12秒前
大气小新完成签到,获得积分10
12秒前
ILS完成签到 ,获得积分10
12秒前
Orange应助澜生采纳,获得10
13秒前
lin完成签到,获得积分10
14秒前
Ares发布了新的文献求助10
14秒前
14秒前
谭平完成签到 ,获得积分10
14秒前
15秒前
淡定紫菱完成签到,获得积分10
15秒前
所所应助HYH采纳,获得20
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794