Field-driven data processing paradigm for multi-information additive manufacturing

计算机科学 稳健性(进化) 灵活性(工程) 信息模型 财产(哲学) 信息集成 领域(数学) 过程(计算) 解析 分布式计算 数据挖掘 工业工程 人工智能 工程类 数据库 认识论 操作系统 统计 基因 哲学 化学 生物化学 纯数学 数学
作者
Senlin Wang,Lichao Zhang,Chao Cai,Mingkai Tang,Junchi He,Lin Qin,Yusheng Shi
出处
期刊:Additive manufacturing [Elsevier]
卷期号:61: 103352-103352 被引量:6
标识
DOI:10.1016/j.addma.2022.103352
摘要

Multifunctional components with various information such as material, structure, process, and performance have become viable and accessible to the industry due to the rapid growth of additive manufacturing (AM) technology from contour modeling to functional modeling. However, multi-information additive manufacturing requirements far outpaced the processing capabilities of current data processing systems to model and interpret multi-information digital models. This paper proposes a field-driven processing paradigm with the ability to describe and parse complex, multi-information distributions. The robustness and flexibility of field-driven design are fully exploited by uniformly converting data including common AM models such as meshes, function formulas, and point clouds into control field representations and setting reasonable control-property mapping rules. The complexity of multi-information modeling is significantly reduced via a combined strategy of control fields and mapping relationships. A complete multi-information model only consists of initial data related to desired properties and corresponding mapping rules. Compared with the voxel method, the amount of data is reduced by more than 80%. The multi-information model is discretely parsed in different dimensions according to manufacturing requirements to efficiently and accurately generate property data for industrial manufacturing. Two representative multi-information demonstrators incorporating material-structure dual gradients and structure-process integration are designed and printed while 3 AM techniques are employed to validate the utility of this paradigm. The paradigm is anticipated to open up an efficient route for the realization of material-structure-process-property integrated AM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成成发布了新的文献求助10
刚刚
Zosty完成签到,获得积分10
刚刚
2秒前
缓慢的三毒完成签到,获得积分10
3秒前
Lucas应助看不懂采纳,获得10
3秒前
大胆听莲发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
英俊的铭应助包容的雨泽采纳,获得100
5秒前
白啾啾完成签到,获得积分10
5秒前
放眼天下完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
小小小小小粉帽啊完成签到,获得积分10
7秒前
7秒前
悦耳从筠发布了新的文献求助10
8秒前
文昊发布了新的文献求助10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
傅宛白完成签到,获得积分10
9秒前
9秒前
9秒前
jxuexiong完成签到,获得积分10
9秒前
gu发布了新的文献求助10
10秒前
CipherSage应助老实半邪采纳,获得10
10秒前
old赵发布了新的文献求助10
10秒前
丘比特应助jeff采纳,获得10
11秒前
11秒前
11秒前
12秒前
傅宛白发布了新的文献求助10
12秒前
鸽子5359完成签到,获得积分10
13秒前
隐形曼青应助chen采纳,获得10
13秒前
13秒前
13秒前
活泼的铃铛给活泼的铃铛的求助进行了留言
14秒前
caizy发布了新的文献求助10
14秒前
压垮稻草的最后一只骆驼完成签到,获得积分10
14秒前
看不懂发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026