Abstract Gears are widely used machine elements to transmit power and motion in the industry. During the power transmission, the gears are subjected to cyclic loads. Thus the fatigue resistance of the gears should be deeply investigated. In particular, this issue is gaining much more importance in the space and aviation fields. In this study, the fatigue life of gears made of 9310-VIM-VAR steel used in the aviation field was determined experimentally, and the crack propagation paths obtained were numerically verified. To this end, the SAE J1619 standard single-tooth bending fatigue test apparatus was redesigned and manufactured in order to adapt it to the helicopter gears. Totally 28 single-tooth bending fatigue tests were carried out for various loading conditions. Accordingly, the S–N curves for the helicopter gears were created. The experimental results were verified by the finite element fatigue crack propagation analysis in terms of the initial crack location, crack initialization angle, and crack propagation paths. Conducted experiments and numerical studies are found as compatible with each other.